
(Established by Government of Gujarat)

Dr. Babasaheb Ambedkar
Open University

BAOU
Educa�on
for All

Web Development Technologies
with ASP.Net

MCA-203

Master of Computer Application
(MCA)

Web Development
Technologies with
ASP.Net

2023

Dr. Babasaheb Ambedkar Open University

Expert Committee

Prof. (Dr.) Nilesh K. Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science
Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application
Ganpat University, Kherva, Mahesana

(Member)

M. T. Savaliya
Associate Professor and Head
Computer Engineering Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Mr. Nilesh Bokhani
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member Secretary)

Course Writer

Content Reviewer and Editor

Copyright © Dr. Babasaheb Ambedkar Open University – Ahmedabad.

ISBN -

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad While all efforts
have been made by editors to check accuracy of the content, the representation of facts, principles,
descriptions and methods are that of the respective module writers. Views expressed in the publication
are that of the authors, and do not necessarily reflect the views of Dr. Babasaheb Ambedkar Open
University. All products and services mentioned are owned by their respective copyrights holders, and
mere presentation in the publication does not mean endorsement by Dr. Babasaheb Ambedkar Open
University. Every effort has been made to acknowledge and attribute all sources of information used in
preparation of this learning material. Readers are requested to kindly notify missing attribution, if any.

Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Mr. Dhaval Raval

Mr. Narendra Patel

Dr. Himanshu Patel

Web Development Technologies with ASP.Net

iii

Dr. Babasaheb
Ambedkar Open
University

Block-1: .NET architecture and Programming

UNIT-1
.Net Architecture 02

UNIT-2
Metadata and Modules 14

UNIT-3
Introduction to C# .Net Language 20

UNIT-4
C# Data Types 35

Block-2: C# Control structure, Properties, Delegates
& Exception Handling

UNIT-1
C# Control Structures 44

UNIT-2
C# Properties 61

UNIT-3
Delegates in C# 68

UNIT-4
Exception Handling in C# 76

MCA-203

Web Development Technologies with ASP.Net

 4

Block-3: Inheritance, Interface and Generics

UNIT-1
Inheritancein C# 86

UNIT-2
Interfaces in C# 97

UNIT-3
Structures in C# 108

UNIT-4
Operator Overloading and
Generics in C# 120

Block-4: Threading, File handling, C# controls

UNIT-1
Multithreading 133

UNIT-2
File I/O with streams 155

1

Block-1

.NET architecture and

Programming

 2

Unit 1: .NET Architecture

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Components of the .Net Architecture

1.4. MS .NET Runtime

1.5. Managed / Unmanaged Code

1.6. Intermediate Language

1.7. Common Type System

1.8. MS .NET Base Class Library (BCL)

1.9. Assemblies

1.10. Let us sum up

1.11. Check your Progress: Possible Answers

1.12. Further Reading

1.13. Assignments

1.14. Activities

1.15. Case studies

1

 3

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to understand:

• Basics of .Net Architecture

• How .Net application compile, run and execute.

• To code in C# programming language

1.2 INTRODUCTION

This topic will cover details about Components of .Net architecture. There will be a

detail description on various .net framework topics like CLR, CTS, BCL, IL, Managed

and Unmanaged Code and Assemblies.

1.3 COMPONENTS OF .NET ARCHITECTURE

.Net Fr amework is also kn own as MS . Net Fr amework as it i s designed an d

Developed by Microsoft. It i s the i nfrastructure f or bui lding, r unning an d d eploying

applications and services. In 2002, the first version of .net framework was released.

The .net f ramework acts like vir tual machine which compile and execute programs

written in different languages like VB.Net, F#, C# etc.Find the detailed Architecture of

.net framework in Figure 1.1

Using . Net f ramework one ca n deve lop Console ap plication, web se rvices, For ms

and Web-based application, mobile phone applications and many more.

.Net framework mainly contains two components:

i) CLR - Common Language Runtime.

ii) BCL - Base Class Library

 4

Figure 1.1: .Net Framework Architecture

Check Your Progress 1

1. List out the main components of .Net Framework.

2. List out t he t ypes of appl ications which ca n be developed using .net

framework.

1.4 MS .NET RUNTIME

Common Language Runtime (CLR)

The r un t ime envir onment pr ovided by .Net Fr amework is known as Common

Language Runtime (CLR). CLR provides an environment for running all types of .Net

Programs and applications. The execution of all kinds of .net programs is managed

 5

by CLR i rrespective of t heir under lying . net pr ogramming l anguage. So b asically

CLR provides memory management, thread m anagement and ot her services

needed to execute a .net program. Find the detail architecture of CLR in figure 1.2

Figure 1.2: Common Language Runtime Architecture.

Suppose, any program w ritten i n C #, V B.net or any other . net pr ogramming

language i s compiled t o M icrosoft I ntermediate l anguage(MSIL) al ong w ith i ts

metadata using sp ecific compiler. The M SIL co de i s platform i ndependent co de.

After su ccessful gen eration of MSIL co de C LR pr ovides runtime envir onment and

needed services to MSIL code. Internally CLR contains JIT (Just In Time) compiler

which g enerates machine /native code f rom t he M SIL co de. Th e m achine / nat ive

code f urther e xecuted by CPU. Fi nd t he i llustration of .net pr ogram ex ecution i n

figure 1.3

 6

Figure: 1.3 .Net Program Execution.

Check your progress 2

1. Give Full Forms: CLR, MSIL

2. MSIL code is executed by _______ .

1.4 MANAGED / UNMANAGED CODE

Managed Code:

The code which is executed by managed runtime execution environment like CLR is

known as Managed code. This code is executed by CLR and cannot be a ccessed

from out side of t he envir onment and al so any direct ca ll f rom out side t he r un

environment is not allowed.

Unmanaged Code:

Code which is not developed in .Net framework and do not run under the control of

CLR is known as unmanaged code. This types of code compiles directly to machine

code and is executed by Operating S ystem. Thi s code i s compiled t o target a

specific CPU architecture and will only run on the intended platform. So code written

for specific architecture, cannot be r un on different architecture. If you want to run

 7

the sa me code on di fferent architecture, then yo u have t o r ecompile co de f or the

particular architecture.

Code which is compiled by C or C++ compilers are known as Unmanaged code.

Check your progress 3

1. Managed Code can be accessed outside CLR (TRUE/FALSE)

2. Unmanaged Code does not execute by Operating System. (TRUE/FALSE).

1.5 INTERMEDIATE LANGUAGE (IL)

As it i s developed by Microsoft i t i s also known as Microsoft I ntermediate

Language(MSIL) or Common Intermediate Language (CIL). Code written in different

.net programming language is compiled by specific compiler to MSIL code.This MSIL

code is a CPU-independent set of instructions whichwill be converted to the nat ive

code. At runtime the MSIL code i s converted t o n ative code by JIT (Just i n Time)

compiler of CLR.

Metadata is also generated while the MSIL code is generated by compiler.Metadata

and MSIL are co ntained i n a p ortable e xecutable (PE) f ile. This MSIL code have

instructions for storing, i nitializing, l oading, and calling methods on obj ects, it a lso

have instructions for logicaland arithmetic operations, direct memory access, control

flow, exception handling, and other operations

Check your progress 4

1. MSIL code is platform independent (TRUE / FALSE)

2. At run time CLR is responsible for executing MSIL code (TRUE/FALSE)

1.6 COMMON TYPE SYSTEM (CTS)

The CTS - Common Type System is a standard for defining and using data types for

any .NET framework program. CTSalso defines a collection of data types, which is

used and managed by run-time to facilitate integration between different languages

 8

CTS pr ovides common t ypes so t hat di fferent . net pr ograms, appl ications and

controls written in d ifferent programming languages can share information easily. It

also describes different sets of dat a t ype which can be use d i n di fferent . Net

languages in common. Because of that CTSconfirms that objects written in different

.Net languages can interact with each other.

The common type system supports two categories of types:

Value types:

Value t ypes contains t he va lue or dat a di rectly; The instances of va lue t ypes

allocated on the stack or al located in a st ructure. Value types can be user-defined,

built-in o r enumerations.

1. Give Full Form: CTS

Reference types:

The r eference t ypes store t he r eference o f va lue’s memory address on the heap

memory. I t can be pointer types, se lf-describing type or interface type. The t ype of

reference t ype i s obtained f rom va lue of se lf-describing t ype. I t i s further sp lit i nto

arrays and class types.

Check your progress 5

2. Different . Net P rograms can sh are information easil y because of C TS

(TRUE/FALSE)

1.7 MS .NET BASE CLASS LIBRARY (BCL)

This is also called as Framework Class Library(FCL) and it is common for all types of

applications.The way for accessing Library Classes and Methods in C#, VB.NET will

be same and common for all other .net programming languages.

Following are different types of applications that can use .net class library.

• Console Application

• Windows Application.

• XML Web Services.

 9

• WCF

• WPF

• Web Application

There ar e comprehensive se t of f ramework classes,many of t hem ar e sh own i n

figure 1.4.

Figure1.4 .net framework Base class library

In short, any developers who want to develop any .net application can just import the

BCL in t heir l anguage co de a nd use its methods and pr operties to i mplement

common and co mplex methods like writing and reading f ile, database i nteraction,

XML document manipulation and graphic rendering.

Check your progress 6

1. Give Full Form: BCL

2. The B CL is a st andard l ibrary ava ilable t o al l l anguage using t he . net

framework. (TRUE/FALSE).

 10

1.8 ASSEMBLIES

Assemblies are basic building blocks of .NET Framework applications. Assemblies

form the fundamental unit of deployment, reuse, activation scoping, version control,

and security permissions. In short it is a compiled output of any program that is used

for easy deployment of a pr ogram or application. Th ey are ex ecutable f iles in t he

form o f e ither dll or exe. It contains collection of resources which were used while

building t he app lication an d it a lsoaccountable for a ll t he l ogical f unctioning. Refer

figure 1.5 for Assembly file contents.

Figure 1.5 Assembly file

• Forms security boundary.

An assembly perform following functions:

• Ensures type safety by forming name scope for types at the runtime.

• It holds IL code that will be executed by common language runtime.

• An assembly is the unit at which permissions are requested and granted.

• It also permits side-by-side execution of multiple versions of same assembly.

• It also contains version information.

There are various types of Assemblies

Static and Dynamic Assemblies:

Static assemblies which include . NET Framework types (classes and interfaces),

and resources for the assembly like bitmaps, JPEG files, resource f iles, and so on.

These assemblies are stored on disk in PE (portable executable) files.

The D ynamic Assemblies directly run from m emory and not sa ved t o d isk before

execution. You can save dynamic assemblies to disk after they have executed.

 11

1. List out the types of Assembly Based on its usages.

Private and Shared Assemblies:

Private Assemblies are considered to be used by one application and must reside in

that appl ication's directory or s ubdirectory.Shared as semblies shared by multiple

application at a t ime and it also ensure reusability. The shared assemblies stored in

GAC (Global Assembly Cache)

Check your progress 7

2. Private Assembly is used by multiple application at a time (TRUE/FALSE)

3. The D ynamic Assemblies directly run f rom m emory and not sa ved t o di sk

before execution. (TRUE/FALSE)

1.9 LET US SUM UP

In t his Unit w e hav e l earnt abou t basics of . Net Fr amework. N ow w e are able t o

explain the importance of .Net framework and how it will be useful for any developer

who are coming from different programming background. Any developer can develop

.net appl ication usin g t heir ow n ch oice of pr ogramming l anguage; t his application

can al so i ntegrate w ith any other appl ication w hich w ere not w ritten i n sa me

programming l anguage. We al so l earn t hat any programme w hich is written i n

Unmanaged code can also be integrate with managed code.

1.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check Your Progress 1

1. The main components of .net Framework are

i. Common language runtime

ii. Framework class library

 12

2. Following are t he t ypes of ap plications which ar e deve loped usin g . net

framework

• Console application

• Form based application

• Web based application

• Phone application

• Web services and many more….

Check your progress 2

1. Give Full Forms:

a. CLR: COMMON LANGUAGE RUNTIME

b. MSIL: MICROSOFT INTERNEDIATE LANGUAGE

2. MSIL code is executed by

Check your progress 3

CLR

1. FALSE

2. FALSE

Check your progress 4

1. TRUE

2. TRUE

Check your progress 5

1. Full Form:

CTS: COMMON TYPE SYSTEM

2. TRUE

Check your progress 6

1. Give Full Form:

BCL: BASE CLASS LIBRARY

2. TRUE

 13

Check your progress 7

1. Types of Assembly Based on its usages:

Private and S hared A ssemblies ar e t wo a ssemblies categorized base d on

their usages.

2. FALSE

3. TRUE

1.11 FURTHER READING

• In depth detail on Components of .Net architecture can be r efer f rom Microsoft

documentation web site: https://docs.microsoft.com/en-us/dotnet/framework/

• Reference Book: Beginning C# Programming by Benjamin Perkins, Jacob Vibe

Hammer and Jon D. Reid, wrox publication.

1.12 ASSIGNMENTS

1. Explain about main component of .Net architecture.

2. Explain with figure: Execution of .net application.

3. Differentiate Managed Code Vs Unmanaged Code.

4. Explain how the MSIL code is platform independent?

5. What is Assembly? Explain different types of assemblies.

1.13 ACTIVITIES

• Study about Assembly files of .net programs.

1.14 CASE STUDIES

• Study the different versions of .net framework.

https://docs.microsoft.com/en-us/dotnet/framework/�

 14

Unit 2: Metadata and Modules

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Metadata and Modules

2.4 Just in Time Compilation

2.5 Garbage Collection

2.6 Let us sum up

2.7 Check your Progress: Possible Answers

2.8 Further Reading

2.9 Assignments

2.10 Activities

2.11 Case studies

2

 15

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to understand:

• Metadata and Modules

• The importance of Just In Time Compiler and its working mechanism

• How .net framework manages memory.

2.2 INTRODUCTION

This topic will cover details about Components of Metadata and modules. There will

be a det ail descr iption on working of Ju st in t ime co mpiler. There i s also a det ail

discussion on Garbage Collection for memory management in .net application.

2.3 METADATA AND MODULES

In past the software components (.exe or .dll) written in one language and unable to

use other programs which were written in another language. COM component has

provided solutions to t his problem. . Net f ramework has made i nteroperations of

components easier by letting compilers to produce extra declarative information into

assemblies and modules. This types of information known as metadata which helps

different software components to interact seamlessly.

Metadata is like binary information of the program which is stored in a PE (Portable

Executable) file in memory. PE file contains Metadata in one por tion and in another

portion MSIL. Types and members those are def ined in a module or assembly are

described in metadata. So when the code is being executed by the runtime, it loads

metadata i n m emory and based on m etadata i t r eferences needed m embers,

classes, inheritance and so on.

Metadata Stores following information:

• Types Description: contains visibility, Name, Base Class, methods, properties,

events and interfaces implemented

• Assembly Description: contains information of other assemblies on which this

assembly depends, security permissions, identity and so on.

 16

• Attributes: Additional elements which modify types and members.

•

Advantages of Metadata:

Self-descriptions of f iles.

•

One of t he great adva ntage of m etadata i s that i t

allows your co de t o describe i tself, t hus removing the need f or Interface

Definition Langua ge (IDL) and type l ibraries. M etadata co ntains everything

that needed to interact with another module.

Language Interoperability:

•

Metadata contains all information required to inherit

a class from a PE file written in different language. So the program can create

an instance of any class irrespective of i ts based language without worrying

about explicit marshaling.

Attributes:

Check your progress 1

 You can d eclare specific kinds of m etadata, known a s attributes.

Attributes are used to control how the program will behave at run time.

1. Metadata stored in ______ file.

2. List Advantages of Metadata.

2.4 JUST IN TIME COMPILATION

As discussed in Common Language Runtime,Just-In Time (JIT) compiler is a part of

CLR. I t i s responsible f or t he ex ecution of any .Net P rogram i rrespective of

underlying pr ogramming l anguage. A s we have l earned i n C LR t hat a l anguage

specific compiler co mpiles the so urce co de i nto MSIL co de. Thi s MSIL co de is

converted to specific computer’s environment native / machine code by JIT compiler.

The m achine co de f rom M SIL co de i s generated by JIT co mpiler base d on t he

requirement meaning that JIT do not convert entire MSIL code into machine code at

a time but it covert to machine code as and when needed.

There are three

i)

 types of JIT compilers.

Pre-JIT: The P re-JIT co mpiler compiles all t he so urce co de t o m achine

code at same time in single compilation process. This compilation done at

application deployment time.

 17

ii) Normal JIT:The portion of source code or methods which are required at

run time will be converted to machine code at the first time by Normal JIT.

After t hat the co mpiled co de s tored i nto ca che and use d f rom ca che

whenever it called again.
iii) Econo JIT: The portion of source code or methods which are required at

run t ime w ill be c onverted t o m achine code by Econo JI T. A nd t his

compiled code is removed from memory as it will not be required in future.

• Less memory usages: as only those methods are compiled which are needed

at a time.

JIT Compiler Advantages:

• Reduced Page faults: Most probably the methods required are stored in same

memory page.

• Code is optimized during run-time based on statistical analysis.

• JIT compiler takes more startup time during the first execution.

JIT compiler Disadvantages:

• Heavy usages of cache memory by JIT to store source code methods during

execution.

Check your progress 2

1. JIT converts __________ code to ___________

2. List the types of JIT.

2.5 GARBAGE COLLECTION

Garbage collector i n . Net manages allocation and de -allocation of m emory f or t he

.net application. Each time CLR allocates memory to new object from the managed

HEAP. The run t ime wil l allocate memory from the managed Heap t ill t he address

space is available.

As the m emory is not i nfinite, g arbage co llector has to per form co llection t o m ake

some memory free. The optimizing engine of the garbage collector fixes best time to

perform a co llection, based on t he al location m ade. G arbage C ollector ch ecks

 18

objects that ar e no l onger use d by application i n t he managed heap m emory and

perform necessary actions to make the memory free.

• Optimization of memory usages.

Benefits of Garbage collection

• No need to write memory de-allocation code in application.

• Auto clean-up of memory from the objects that are no longer in use.

Check your progress 3

1. CLR allocates memory to new object from the __________ .

2. List benefits of Garbage collection.

2.6 LET US SUM UP

In t his unit w e have learned a bout M etadata and i ts important i n . net pr ogram

execution. We now a ble t o und erstand t ypes of JI T co mpiler and ho w i t hel ps to

convert MSIL code to native code. We also learn about Garbage collections and how

it is helpful in .net program execution and memory management.

2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your progress 1

1. Metadata stored in PE

2. Advantages of Metadata:

 file.

• Self-descriptions of files

• Language interoperability

• Attributes

Check your progress 2
1. JIT converts MSIL code to

2. Types of JIT:

native code.

• Pre JIT

• Normal JIT

• Econo JIT

 19

Check your progress 3
1. CLR allocates memory to new object from the managed Heap

2. Benefits of Garbage collection:

.

• Optimization of memory usages.

• No need to write memory de-allocation code in application.

• Auto clean-up of memory from the objects that are no longer in use.

2.8 FURTHER READING

• In depth detail refer f rom Microsoft docu mentation w eb s ite:

https://docs.microsoft.com/en-us/dotnet/framework/

• Reference B ook: B eginning C # P rogramming by Benjamin P erkins, Ja cob

Vibe Hammer and Jon D. Reid, wrox publication.

2.9 ASSIGNMENTS

1. What is Metadata? Explain briefly

2. Briefly explain Just-In-Time compiler.

3. What Garbage collection do? Explain its advantages.

2.10 ACTIVITIES

• Compare code compilation process of Java code with .net code.

2.11 CASE STUDIES

• Study the M emory management of ot her pr ogramming l anguage e. g.
JAVA

https://docs.microsoft.com/en-us/dotnet/framework/�

 20

Unit 3: Introduction to C# .NET
language

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Introduction to C# .Net language

3.4 C# Program Console Application Development

3.5 Compiling and Executing

3.6 Defining a Class

3.7 Declaring the Main () Method

3.8 Organizing Libraries with Namespaces

3.9 Using the using Keyword

3.10 Adding Comments

3.11 Let us sum up

3.12 Check your Progress: Possible Answers

3.13 Further Reading

3.14 Assignments

3.15 Activities

3.16 Case studies

3

 21

3.1 LEARNING OBJECTIVES

After studying this unit students should be able to understand:

• Programming using C# language, its compilation and execution.

• Console application development.

• Working with Classes and Methods.

• Working with Libraries and Namespaces.

• Different types of Comments and Keywords.

3.2 INTRODUCTION

This unit co vers basics of C # .net programming language, there w ill be a det ail

discussion on C # Comments, C lasses, M ethods, Li braries and Namespaces. This

unit also covers steps to compile and execute any C# program.

3.3 INTRODUCTION TO C# .NET LANGUAGE

C# is an object oriented programming language. It is pronounced as C-Sharp. It is a

type-safe object or iented l anguage which a llows developers to deve lop robust and

secure application that runs on .net framework. Using C# one can develop windows

client ap ps, W eb s ervices, cli ent se rver apps, di stributed co mponents, dat abase

apps and many more.

C# is simple and easy to learn programming language. Any developer who is familiar

to C, C++ or Java can easi ly learn programming in C#. C# has very simple syntax

compares to C++ complex syntax and it also provides powerful

features like del egates, enum erations, di rect m emory access, and l ambda

expressions.

As C# is an obj ect or iented pr ogramming l anguage, i t s upports inheritance,

polymorphism and e ncapsulation. In addi tion to this basics principle of OOP i t also

supports Delegates, Properties, Attributes and LINQ.

 22

Build process of C# program is simple compared to C, C++ and Java as there is no

particular order def ined f or decl aration t ypes and m ethods as well as there i s no

need to have separate headers files.

Check your Progress 1

1. C# supports oops concepts (TRUE/FALSE).

2. Other than OOP which additional features C# supports?

3.4 C# PROGRAM CONSOLE APPLICATION
DEVELOPMENT

The Console application is a types of application that will run in windows command

prompt. Generally,building first console application is ideal for beginner on .net.

We will use Visual Studio to create console application. Later on we learn to develop

the first console application “Hello World…!”

Follow the given steps for the first console application.
1. Open Visual studio(Install the visual studio if you have not installed it)

2. Open Fi le Menu and C hoose New --> P roject... It will ope n t he N ew Project

dialog box as per below figure.

 23

3. Now from l eft side menu e xpand Installed, Tem plates, Visual C # and se lect

Windows then Choose Console Application. As per below figure.

4. Type appropriate Name for your project in the Name box then click on OK button

it will create a new project in Solution Explorer.

5. If P rogram.cs is not open i n Code Editor window, then open sh ortcut menu for

program.cs fromm solution explorer and choose view code.

 24

6. Write t he following c ode i n t he C ode E ditor w indow f or yo ur f irst “Hello
World…!” program

// A Hello World! program in C#.

using System;

namespaceFirstApplication

{

class Program

 {

static void Main()

 {

Console.WriteLine("Hello World…!");

 // Below code will keep the console window open till any key is pressed.

Console.WriteLine("Press any key to exit….");

Console.ReadKey();

 }

 }

}

7. Now you can run this project by pressing F5 key or from Debug menu.

8. A co mmand pr ompt w indow will ap pear and i t contains the l ine “ Hello
World…!”as per below figure.

Now let us understand the entire code line by line.

• // A Hello World! program in C#.
The first line of the program starts with a comment with characters: ‘//’

• using System;
to use C lasses and methods from S ystem nam espace w e ha ve t o use t his

namespace.

 25

• namespace FirstApplication
Your cl ass will be placed in a namespace, by default i t w ill t ake t he name

given in New Project dialog.

• { }
Curley brackets used to separate blocks of codes.

• class Program
This line will create a class named Progrma.

• static void Main()
Every console application must have Main method. It is the starting points of a

program w here t he obj ects are created and ot her m ethods executed. The

Main method is a static method. Here void is the return type, means this Main

method r eturns nothing. Ther e ca n be any r eturn type l ike i nt, st ring, et c…

• Console.WriteLine("Hello World…!");
Console is one of t he class of . net f ramework run time l ibrary. I t co ntains

several m ethods for Input and O utput oper ations. WriteLine() is the out put

methods of t he C onsole cl ass. I t d isplays the st ring par ameters on t he

standard output stream, Here Hello World…! will be displayed on the output.

• Console.ReadKey();
As mentioned ear lier t hat C onsole c lass co ntains methods for i nput a nd

output; the Readkey() is a input method. This method will wait to read a ke y

from user and thus it prevents the program from terminating instantly.

Check Your Progress 2

1. WriteLine() and ReadKey() are methods of _____________ class.

2. Main() method can have only void as a return type (TRUE/ FALSE)

 26

3.5 COMPILING AND EXECUTING

We se e i n pr evious section ho w t o co mpile and r un t he co nsole app lication usin g

Visual Studio Integrated Development Environment (IDE).

Besides Visual studio IDE you can also compile and Execute the program from the

command line. Follow below steps for the same.

1. Copy and Paste the code into any text editor from the previous procedure.

2. Save the text file as Program.cs. Here extension for C# source code is .cs

3. Set the environment variables for command line.

4. Open the command prompt window.

5. Navigate to the folder which contains Program.cs file in the command-prompt

window.

6. Enter csc Program.cs command in command prompt to compile Program.cs

program.

7. If t he P rogram has no co mpilation er ror t hen an ex ecutable f ile nam ed

Protram.exe will be created.

8. Now enter the .exe file name Program in command prompt window to run the

program.

Check you progress 3

1. ______command is used to compile any C# program?

2. ______ file is generated when you compile a C# file.

3.6 DEFINING A CLASS

class keyword is used to declare classes in C#.

The syntax to declare a class in C# is:

[access modifier] [class] [identifier]

{

}

 27

Find Below an example to declare a class in C#.

public class MyFirstClass

{

 // properties, methods, fields and events declared here…

}

In the above example ‘public’ is the access modifier which denotes that anyone can

create i nstance of t hat class. The se cond w ord i s class key word w hich used t o

declare a class in C #. The t hird i s a cl ass name w hich sh ould be any valid C#

identifier name. The body of the class contains between opening ({) and closing (}

) cu rly b rackets. C lass co ntains class members like pr operties, m ethods, eve nts

etc…

1. Write syntax to create a class in C#.

Creating Objects of class

Object is an instance of a class. It is a concrete entity based on a class.

‘new’ keyword is used to create an object of the class. Refer below code to create an

object

MyFirstClass Obj1 = new MyFirstClass();

MyFirstClass Obj2 = new MyFirstClass();

MyFirstClass Obj3 = new MyFirstClass();

When an i nstance o f a class is created, i ts reference i s passed back to the

programmer. Here Obj1, Obj2 and Obj3 are reference to an objects that is based on

MyFirstClass. These objects refer to new objects but they do not contain any data.

Check your progress 4

2. __________key word is used to create an object of a class.

 28

3.7 DECLARING THE MAIN () METHOD

Every C# application contains at least one Main() method. It is the entry point for any

C# application. The Main method is the first method which will be invoked when the

application is started.

There is only one entry point for any C# application. If your program contains more

than one Main method than you need to specify which Main method will be used as

an entry point during compile time.

Find the declaration of Main method in below example.

class DemoClass

{

 static void Main (string[] args)

 {

 System.Console.WriteLine(“No of Arguments: ”+args.Length);

 }

}

• The Main method is always static, means this method can be ca lled without

any object.

Overview of Code:

• By default, access modifier is private.

• The Main method can have void or int return type.

• The Main method may also be declare with string[] parameter. This parameter

contains command-line arguments.

• Above program will print number of arguments passed when it is executed.

Check your progress 5

1. ________ method is called first when C# programme is executed.

2. Main method can be non-static (TRUE/FALSE)

 29

3.8 ORGANIZING LIBRARIES WITH NAMESPACES

Namespaces used to organize too many classes so that it will be easy to handle any

C# app lication. I t al so hel ps to keep one set of c lasses separate f rom an other. A

programmer ca n cr eate sa me nam ed clas ses in di fferent nam espaces and no

conflict arises due to same name of classes.

A nam espace def inition b egins w ith t he ke yword namespace followed b y the

namespace name as follows:

using System;
namespace DemoNamespace
{
 class Demo

{
 static void Main()
 {

Console.WriteLine(“DemoClass from DemoNamespace”);
 }
 }
}

• Namespace is used to organize large objects.

Overview:

• The f irst l ine of above pr ogram sh ows the use of System namespace w ith

‘using’ keyword

• The second line shows how to declare a namespace, here in above program

‘DemoNamespace’ contains class named ‘Demo’.

• We have directly used WriteLine method of Console class without specifying

‘System’ namespace (before C onsole.WriteLine()) as we hav e a lready used

the System namespace in first line of code.

• Namespaces are delimited by the ‘.’ (dot) operator.

Check your progress 6

1. Same named class can be created in different namespace (TRUE/FALSE)

2. To import a namespace in a C# program ____________ keyword is used.

 30

3.9 USING THE USING KEYWORD

There are three major usages of ‘using’ keyword.

• The using statement defines a scope: means at the end of the statement an

object will be disposed.

using (Font f1 = new Font(“Times new Roman”, 10.0f))

{

Byte charset = f1.GdiCharSet;

}

Here File and Font are examples of managed types that access unmanaged

resources. All such types must implement IDisposable interface.

The usi ng st atement ca lls t he Dispose m ethod on t he obj ect, and i t a lso

causes the object itself to go out of scope as soon as Dispose is called. The

using st atement al so ensu res that D ispose i s called even i f an ex ception

raised.

• The using directiveis used to create an al ias for a na mespace and al so used

to imports types defined in other namespaces.

The using directive has three uses:

o To allow the use of types in a namespace.

e.g. using System.Text;

o To allow you to access static members and nested types of a type without
having to qualify the access with the type name.

e.g. using static System.Math;

o To create an alias for a namespace or a type.

e.g. using Project1 = PC.MyOrganization.Project;

• The using static directive used to importmembers of a single class.

The using static directive ent itles a t ype w hose st atic members and nest ed

types can be accessed without specifying a type name.

 31

The syntax is: using static <fully-qualified-type-name>;

e.g. using static System.Math;

Check you progress 7:

1. using statement is also used to dispose an object (TRUE / FALSE)

2. using directive is also used to create an alias of a namespace (TRUE/FALSE)

3.10 ADDING COMMENTS

Comments are use d for det ail explanation of co de in any programming l anguage.

Compiler do not execute the commented code and ignore that line(s).

In C# there are three types of Comments.

1.

This comment is used to comment a single line.

Syntax: // This is single line comment.

Single line comments (//)

2.

This comment is used to comment multiple lines. It is used by programmers if

they want to comments a block of code in a program.

Syntax:

/* this is

Multiline comment.

And it comments out more than one line */

Multiline Comments (/*…….*/)

3.

It is the special types of comments which is used to create a documentation of

code by using XML elements in a program.

Syntax:

/// <summary>

/// Summary of the program goes here….

///</summary>

XML Documentation comments (///)

 32

1. ______ characters used for a single line comment.

Example:

/// <summary>This program performs addition operation

/// on two variable values

///</summary>

static void Main()

{

/* The value for variables

 Are pre-defined */

int a=50;

int b=30;

int sum=0;

// The following statement will perform Addition operation.

sum= a+b;

System.Console.WrieLine(“The Answer is: {0}”,sum);

}

Check you progress 8:

2. ______ characters are used for XML document comment.

3. The comment starts with characters /* and ends with */ is known as ________

comment.

3.11 LET US SUM UP

In t his unit w e l earned about C # pr ogramming l anguage. You l earned t o cr eate a

simple co nsole ap plication i n C # pr ogramming w ith t he use of vi sual st udio as an

IDE. We also learned the compilation and execution of a C# program without the use

of visual studio. We have also learned about use of namespace, how to defining a

class, Main method and different types of comments in this unit.

 33

3.12 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

1. TRUE

2. Other t han O OP C # su pports: del egates, enum erations, direct m emory

access, lambda expressions and many more.

Check Your Progress 2

1. WriteLine() and ReadKey() are methods of Console
2. FALSE

class.

Check you progress 3

1. CSC
2.

 command is used to compile any C# program?

.EXE

Check your progress 4

 file is generated when you compile a C# file

1. Syntax to create a class in C#:

[Access modifier] class [class name] { block of statements }

2. new

Check your progress 5

 key word is used to create an object of a class.

1. Main()
2. Main method can be non-static: FALSE

 method is called first when C# programme is executed.

Check your progress 6

1. TRUE

2. To import a namespace in a C# program __using__

Check you progress 7

 keyword is used.

1. TRUE

2. TRUE

 34

Check you progress 8
1. __//_
2.

 characters used for a single line comment.

///
3. The comment starts with characters /* and ends with */ is known as

 characters are used for XML document comment.

multiline

comment.

3.13 FURTHER READING

• In dept h det ail r efer from M icrosoft d ocumentation w eb sit e:

https://docs.microsoft.com/en-us/dotnet/csharp/

• Reference Book: Beginning C# Programming by Benjamin Perkins, Jacob Vibe

Hammer and Jon D. Reid, wrox publication.

3.14 ASSIGNMENTS

1. What is C#?

2. Explain why there is a namespace in C#.

3. Explain in detail the Main() method of C#.

3.15 ACTIVITIES

1. Create C# console application program which will print your name, Date of Birth

and city which are entered by user.

2. Create a C# console application which will print the numbers of arguments

passed.

3.16 CASE STUDIES

• Compare Ja va, C and C ++ w ith C # pr ogramming l anguage t o f ind t he

differences and similarities among them.

https://docs.microsoft.com/en-us/dotnet/csharp/�

 35

Unit 4: C# Data Types

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 C# Data Types

4.4 Value Types-Primitive Data Types

4.5 Reference Types

4.6 Let us sum up

4.7 Check your Progress: Possible Answers

4.8 Further Reading

4.9 Assignments

4.10 Activities

4.11 Case studies

4

 36

4.1 LEARNING OBJECTIVES

After st udying t his un it st udent should be able t o understand v arious Data Typ es

used in C#. S tudent w ill al so learn abo ut V alue t ypes and R eference t ypes data

types.

4.2 INTRODUCTION

In this unit there will be a detail discussion on various Data Types used in C#.This

unit also covers Value types and Reference types.

4.3 C# DATA TYPES

In any programming language a data type is something that tells its compiler the kind

of value a variable hold. There are many in-built data types for different kinds of data

in C#, e.g. number, String, float, etc.

Every data types can have a specific range of value. The following table represents

different data types of C# with its size

Data
Type

Type Size
(bits)

Range (values)

Byte Unsigned integer 8 0 to 255

Sbyte Signed integer 8 -128 to 127

Short Signed integer 16 -32,768 to 32,767

ushort Unsigned integer 16 0 to 65,535

int Signed integer 32 -2,147,483,648 to 2,147,483,647

uint Unsigned integer 32 0 to 4294967295

long Signed integer 64 -9,223,372,036,854,775,808 t o

9,223,372,036,854,775,807

ulong Unsigned integer 64 0 to 18,446,744,073,709,551,615

float Single-precision f loating

point type

32 -3.402823e38 to 3.402823e38

 37

double Double-precision f loating

point type

64 -1.79769313486232e308 t o

1.79769313486232e308

decimal Precise f ractional or

integral t ype t hat ca n

represent decimal numbers

with 29 significant digits

128 (+ or -)1.0 x 10e-28 to 7.9 x 10e28

char A single Unicode character 16 Unicode symbols used in text

bool Logical Boolean type 8 True or False

object Base type of all other types

string A sequence of characters

DateTime Represents date and time 0:00:00am 1/ 1/01 t o 11: 59:59pm

12/31/9999

Check your progress 1

1. Define : Data Type

4.4 VALUE TYPES-PRIMITIVE DATA TYPES

There are two types of data types in C# based on the value store in memory. One is

Value Type and another one is Reference Types.

The Value Type data type holds data value within its own memory space.

For Example, int a = 500;

In value type, system will store value 500 in the same memory space which allocated

to variable ‘a’. Refer following image for the illustration.

 Variable a
int a=500;

RAM
0x200345

500

 38

Following are the example of Value types data types

• byte

• bool

• char

• double

• decimal

• enum

• float

• int

• sbute

• long

• short

• struct

• uint

• ulong

• ushort

Pass by Value:

When a value is passed from one method to another method, there will be a

separate copy of a variable is created in another method. So change of value in one

method does not affect the value stored in another method.

Example: Passing By Value:

Static void AlterValue(int i)

{

 j = 10;

 Console.WriteLine(j);

}

static void Main (string[] args)

{

 int k = 20;

 39

 Console.WriteLine(k);

 AlterValue(k);

 Console.WriteLine(k);

}

OUTPUT:

20

10

20

In the above example value of variable k in Main() method will not change even after

AlterValue() method call.

Check your progress 2

1. What is Value type data type?

2. Is ‘enum’ a value type data type? (YES/NO)

4.5 REFERENCE TYPES

Reference types does not store value directly in its own memory. But it stores the

address where the value is actually stored. It means reference types variable stores

the address of memory location where the actual value is stored. Refer below figure

for more detail.

For example,

String s = “Hi, how are you?”

0x802034 0x500800

Reference type variable stores the

Address where actual value is

stored.

Actual Value

Hi, how are you? 0x500800

 40

As you can see in the above figure that, system has selected a random memory

location (0x802034) for variable s. The value of that variable is 0x500800 which is

memory location of actual data.

Following are the example of Reference type data types:

• Arrays

• String

• Class

• Delegates

Pass by Reference

When a reference type variable passes from one method to another method, it will

not create copy of it; but it passes address of that variable. If you change the value of

that variable in a method than it will also be reflected in the calling method.

static void ChangeRef_Type(Student s2)

{

 s2.StudentName = "ABC";

}

static void Main(string[] args)

{

 Student s1 = new Student();

 s1.StudentName = "XYZ";

 ChangeRef_Type(s1);

Console.WriteLine(s1.StudentName);

}

OUTPUT:

ABC

 41

Here i n e xample, w hen w e s end t he S tudent obj ect s1 t o ChangeRef_Type()

method, w e actually send the m emory address of s1 . S o, w hen t he

ChangeRef_Type() m ethod ch anges StudentName, i t act ually change t he

StudentName of s1, As s1 and s2 both points to the same address in memory.

Because of that the Output is ABC

Boxing is the process of converting a value type to a reference type data type. While

unboxing is the process to convert reference type to value type data type.

Refer below code for boxing and unboxing in C#

Boxing and unboxing

int a = 10;

Object obj1 = a; //Boxing

1. What is Reference type data type?

a = (int) obj; //Unboxing

Check your progress 3

2. Conversion of a value type to reference type is known as _________ .

4.6 LET US SUM UP

In this unit we learned about Data Types of C#. Now we are in a position to

distinguished value type and reference type data type. We also learn difference

between Pass by value and Pass by reference. We have also learned about what is

Boxing and Unboxing in C#.

4.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your progress 1
1. Data Type: Data type tells its compiler which the type of value stored in the

variable.

 42

Check your progress 2
1. Value type data type:

The Value Type data type is a data type which holds data value within its own

memory space. E.g. int a = 200;

2. Is ‘enum’ a value type data type? : YES

Check your progress 3
1. Reference type data type:

A Reference types data type does not store value directly, but it stores the

address where the value is actually stored.

2. Conversion of a value type to reference type is known as Boxing.

4.8 FURTHER READING

• In dept h det ail r efer from M icrosoft d ocumentation w eb sit e:

https://docs.microsoft.com/en-us/dotnet/csharp/

• Reference Book: Beginning C# Programming by Benjamin Perkins, Jacob Vibe

Hammer and Jon D. Reid, wrox publication.

4.9 ASSIGNMENTS

1. Differentiate Value Type Vs Reference type data types.

2. Explain what is pass by value and pass by reference.

4.10 ACTIVITIES

• Create a C# console application to perform Boxing and Unboxing operations.

4.11 CASE STUDIES

• Learn about Value types and reference types of other programming

languages like C, C++ or JAVA.

https://docs.microsoft.com/en-us/dotnet/csharp/�

 43

 Block-2

C# Control structure, Properties,

Delegates & Exception Handling

 44

Unit 1: C#Control Structures

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Using the if statement

1.4. Using the if-else statement

1.5. Using the switch case statement

1.6. C# looping controls and jumping statement

1.7. Let us sum up

1.8. Check your Progress: Possible Answers

1.9. Further Reading

1.10. Assignments

1.11. Activities

1.12. Case studies

1

 45

1.1. LEARNING OBJECTIVES

After st udying t his unit st udent sh ould be abl e t o under stand va rious co ntrol

statements of C# programming l anguage. S tudents will also be able t o control t he

flow of a C# program using various conditional, looping and jumping statements.

1.2. INTRODUCTION

This unit covers basic control statements of C# programming language. Student will

learn various conditional statements like i f, i f-else and swi tch cases. They will also

learn looping and jumping statements like for, while, do while, break, continue, return

and goto.

1.3. USING THE IF STATEMENT

The i f st atement eva luates Boolean exp ression. The bl ock of s tatements inside i f

block will be executed if the output of the Boolean expression is true. If the Boolean

expression output is false, then the statements inside if block will not be executed.

Syntax:

 if (Boolean Expression)

 {

 //statements

 //these statements will be executed if the condition is true

 }

Example:

using System;

namespace ifDemo

{

 class if_demo

 {

 public static void Main(string[] args)

 {

 46

 int a = 3;

 if (a< 10)

 {

Console.WriteLine("The given number {0} is less than

10", a);

 }

Console.WriteLine("This statement is outside of if block and

always executed.");

 }

 }

}

OUTPUT:

The given number 3 is less than 10

This statement is outside of if block and always executed.

Code explanation:

• The first line of code inside main method contains variable ‘a’ and its value is

initialized to number 3.

• The se cond l ine co ntains conditional st atement if to ch eck the va lue of

variable ‘a’is less than 10 or not . Here 3 i s less than 10 so i t will return true

value

• As the i f statement returns true the code f rom the next l ine will be executed

and will print the message “The given number 3 is less than 10”.

• The ne xt l ine of co de w ill a lways be e xecuted and will print m essage “This

statement is outside of if block and always executed” because t his code i s

outside the if block.

Check your progress 1

1. The if statement evaluates ________ expression.

2. What values the Boolean expression will return?

 47

1.4. USING THE IF-ELSE STATEMENT

Every if statement in C# have an opt ional elsestatement. The statements from the

elseblock will be executed when the Boolean expression from i f expression returns

false.

Syntax:

if (Boolean Expression)

 {

 //statements

 //these statements will be executed if the condition is true

 }

 else

 {

 //these statements will be executed if the condition is false.

 }

Example:

using System;

namespace if_else_Demo

{

 class if_else_demo

 {

 public static void Main(string[] args)

 {

 int a = 13;

 if (a< 10)

 {

Console.WriteLine("The given number {0} is less than

10", a);

 }

 else

{

Console.WriteLine("The given number {0} is greater than

10", a);

 48

}

 }

 }

}

Code explanation:

• The first line of code inside main method contains variable ‘a’ and its value is

initialized to number 13.

• The se cond l ine co ntains conditional st atement if to ch eck the va lue of

variable ‘a’is less than 10 or not. Here variable value 13 which is greater than

10 so the if statement will return false value and the if block will be skipped.

• Here, st atement from else b lock will be e xecuted as the va lue r eturns by if

statement is false, and t he st atement w ill pr int t he m essage “The given

number 13 is greater than 10”.

Check your progress 2

1. When the code from else block is executed?

1.5. USING THE SWITCH CASE STATEMENT

The Switch statement is one types of decision making statement like as if statement.

It i s a se lection st atement w hich se lects a sing le sw itch ca se from a l ist o f sw itch

cases based on a pattern match. The switch statement is also used as an alternative

to if…else if statement.

The s witch e xpression ca n be of di fferent type su ch as char, i nt,short,byte, string

orenumeration type. The exp ression will be checked f or di fferent ca ses and the

matched case will be executed.

Switch st atement haveat l east one switch se ctions with ca se la bels‘case:’or

‘default:’and it is followed by one or more statements. The execution from one switch

section to the next switch section is not allowed. To meet this requirement one has to

 49

use j ump statements l ike br eak, got o or r eturn t o m anually exit f rom t he swi tch

section.

Syntax:

switch (expression) {

case value1: // sequence of statements

break;

case value2: // sequence of statements

break;

.

.

.

case valueN: // sequence of statements

break;

default: // sequence of statements for default case

}

Consideration for Switch statement:

• Duplicate values for case isnot allowed.

• The data type of the variable in the switch and value of a case must be of the

same type.

• The value of a case must be a literal or a constant. Variables are not allowed.

• The break in switch statement is used to terminate the current sequence.

• Only one default statementis allowed and it is optional.

Example:

using System;

public enum Shape {Triangle, Square, Circle}

public class Example

{

public static void Main()

{

 50

Shapes = (Shape) (new Random()).Next(0, 3);

switch (s)

{

caseShape.Triangle:

Console.WriteLine("The Shape is Trianlge");

break;

caseShape.Square:

Console.WriteLine("The Shape is Square");

break;

caseShape.Circle:

Console.WriteLine("The Shape is Circle");

break;

default:

Console.WriteLine("The Shape is unknown.");

break;

}

}

}

OUTPUT:

The Shape is Square

Code Explanation:

• In t he above ex ample S hape i s the enum w hich co ntains three di fferent

shapes Triangle, Square and Circle.

• In the first line of main method ‘s’ is a type of Shape enum which will contain

any one value of the Shape from the three Shapes value at a time.

• The ne xt l ine of co de i s the swi tch st atement i t w ill co mpare t he va lue o f

Shape ‘s’ with t he gi ven swi tch cases and execute t he st atements from the

matching case.

• In this example every switch case contains a break statement which will break

the execution and pass the control out of the switch block.

 51

• This example also h as a d efault ca se; which w ill be e xecuted w hen no

matching value found in the given cases.

Check your progress 3

1. Switch statement contains more than one default statement (TRUE/FALSE).

2. The e xecution f rom one swi tch se ction t o anot her swi tch se ction i s not

allowed (TRUE/FALSE).

1.6. C# LOOPING CONTROLS AND JUMPING STATEMENT

1.6.1 Using the for statement

The for statement is used to executes block of statements repetitively

till t he B oolean e xpression of f or l oop eva luates to t rue. The break

statement can be us ed to break out f rom the loop. You can a lso use

continue statement within for block to step to the next iteration.

SYNTAX:

for (initialization variable; condition; steps)

{

 //Block of statements

}

The syntax contains three parts:

• Initialization va riable: declar ation and initialization of a va riable

which will be used in condition and steps expression.

• Condition: It i s a boo lean e xpression w hich w ill r eturn t rue or

false.

• Steps: It defines the increment or decrement part of for loop.

Example:

for (int i=0; i<10; i++)

{

 if(i==3)

 52

 Continue;

 if(i==6)

 break;

Console.WriteLine(Value of i: {0}, i);

}

Output:

Value of i:0

Value of i:1

Value of i:2

Value of i:4

Value of i:5

Code Explanation:

In the given example the first part of for loop contains integer variable i

and i t i s initialized t o va lue 0. The se cond par t co ntains boolean

expression i<10; which means the for loop iterate to 10 times or till it is

manually terminated by a br eak statement. The t hird par t co ntains

steps to increment the value of i by 1.

The block of code of for loop also contains a continue statement which

will i terate the next i teration when the va lue of i r eaches to 3. It al so

contains a break statement which will break the for loop when the value

of i reaches to 6. In rest of the cases the last statement of for loop will

be exe cuted and w ill pr int t he message on co nsole as displayed i n

Output.

1.6.2 Using the while statement

The while statement is also a l ooping statement like a f or loop but the

only difference h ere i s that it has only one part t hat i s boolean

expression. The w hile l oop ca n al so be e xecuted ze ro t imes as t he

boolean expression is executed before the while loop’s block.

 53

You can also use break and continue statements in while loop.

Syntax:

while (boolean expression)

{

//blocks of statements

}

Example:

int j=0;

while (j<4)

{

Console.WriteLine(j);

j++;

}

OUTPUT:

O

1

2

3

Code Explanation:

Here the first line of code contains the initialization of integer variable j

to va lue 0. The w hile loop in t he se cond l ine c ontains boolean

expression j<4 which will be eva luated for every iteration. The block of

while loop contains two line of code; the first line will print the value of j

as displayed in output and the second line will be used to increment the

value of variable j by 1.

1.6.3 Using the do while statement
Statements of do while l oop will b e e xecuted w hen a boolean

expression evaluates to t rue. The do -while loop can be executed one

 54

or more t imes as the boolean expression is evaluated af ter execution

of the loop.

You can also use break and continue statements in do-while loop.

Syntax:

do

{

//block of statements.

} while(boolean expression)

Example:

intj=5;

do

{

Console.WriteLine(j);

j - -;

}while(j>0);

OUTPUT:

5

4

3

2

1

Code Explanation:

In the first line of the above example a integer variable j is initialized to

value 5. The next l ine contains do keyword which is an entry point for

the do -while l oop. The do -while bl ock will al ways be executed at t he

first t ime a s the bool ean e xpression i s evaluated a fter the do -while

block. This example will print value of variable j as displayed in output

 55

and the value will be decremented for each iteration by j-- code in each

iteration. The do -while l oop will be t erminated w hen t he va lue o f

variable j reaches to 0.

1.6.4 Using the break statement
The break statement used to terminate looping or switch statement.

Example:

for (int i=0; i<5; i++)

{

 if(i==3)

 break;

Console.WriteLine(Value of i: {0}, i);

}

Console.WriteLine(“This statement is out of for loop”)

OUTPUT:

Value of i:0

Value of i:1

Value of i:2

This statement is out of for loop

In the above example the break statement will break the execution of

for loop and executes the next line after the for loop when the value of

variable i reaches to 3.

1.6.5 Using the continue statement
The continue statement is used to pass control to the next i teration in

looping statement.

 56

Example:

for(int i=5; i<=5; i++)

{

 if (i<4)

 {

 continue;

 }

Console.WriteLine(i)

}

OUTPUT:

4

5

Code Explanation:

In the above example the i teration of for loop will be skipped through

continue statement t ill the value of variable i remains less than 4. The

program w ill print va lue of i as di splayed i n out put w hen its value

became greater than or equal to 4.

1.6.6 Using the return statement
The return statement is used to terminates the execution of the method

in which it appears and returns control to the calling method. If the type

of method is void, then the return statement will be omitted.

Example:

class ReturnDemo

{

 static int squareArea(int a)

 {

 int area = a*a;

 return area;

 }

 57

 static void Main()

 {

 int length_of_side = 5;

 int result = squareArea(length_of_side);

 Console.WriteLine(“The Area of Square is {0}”, result);

 Consloe.ReadKey();

 }

}

Code Explanation:

In the example there is a ReturnDemo class which contains Main() and

a sq uareArea() m ethods. N otice t he return keyword in sq uareArea()

method w hich i s used t o r eturn i nteger va lue f rom t he sq uareArea()

method. The sq uareArea method will be called f rom the Main method

and the va lue returned by squareArea method will be stored in result

variable.

1.6.7 Using the goto statement
The goto statement is used to transfer the program control directly to a

labeled st atement. It i s also use ful t o get o ut f rom the deeply nested

loops.

Example:

class GotoDemo

{

static void Main(string[] args)

 {

string yourname;

L1: // creating label

Console.WriteLine("Enter your name: ");

yourname = Console.ReadLine();

Console.WriteLine("Welcome {0}", yourname);

 58

Console.WriteLine("Ctrl + C to Exit\n");

gotoL1; //jump to L1 statement

 }

}

Code Explanation:

In the above example L1: is the label and the last line of code is a goto

statement, the l ast l ine co ntains got o L1, means the pr ogram control

will be passed to label L1 in the program thus the program will never be

terminated as the goto statement transfer the control to lable L1 every

time. So to terminate the program one has to press Ctrl+C key to exit.

Check your progress 4

1. List out the looping statements of C# language.

2. The do-while loop can be executed at least one time (TRUE/FALSE).

3. Execution of a m ethod ca n be t erminated us ing r eturn st atement

(TRUE/FALSE).

4. _________statementused to terminate looping or switch statement.

5. _________ statement is used to pass control to the next iteration in looping

statement.

6. _________statementis used t o transfer t he pr ogram control di rectly to a

labelled statement.

1.7. LET US SUM UP

In this unit we learned C# control, looping and jumping statements

1.8. CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your progress 1

1. The if statement evaluatesBoolean expression.

2. The Boolean expression will return true or false.

 59

Check your progress 2
1. The st atements from t he else block will be e xecuted w hen t he B oolean

expression from if expression returns false.

Check your progress 3

1. False

2. True

Check your progress 4

1. List out the looping statements:While, do-while and for loop.
2. The do-while loop can be executed at least one time: TRUE

3. Execution of a method can be terminated using return statement: TRUE

4. breakstatement used to terminate looping or switch statement.

5. continue statement i s used t o pass control t o t he next i teration i n looping

statement.

6. goto statement is used to transfer the program control d irectly to a l abelled

statement.

1.9. FURTHER READING

• In dept h detail can be referred from M icrosoft docu mentation w eb site:

https://docs.microsoft.com/en-us/dotnet/csharp/

• Reference Book: Beginning C# Programming by Benjamin Perkins, Jacob Vibe

Hammer and Jon D. Reid, wrox publication.

1.10. ASSIGNMENTS

1. Differentiate Switch case Vs if-else if statements

2. Compare various looping statements of C#.

3. State the usages of C# jumping statements.

https://docs.microsoft.com/en-us/dotnet/csharp/�

 60

1.11. ACTIVITIES

1. Create a C # Console application to find the number given by user is ODD or

EVEN.

2. Create a C # C onsole appl ication t o Check the num ber gi ven by user i s

Palindrome or not.

3. Create a C# Console application to display sum of digits of given number.

4. Create a C# Console application to find the given number is prime number or

not prime.

5. Create a C # C onsole appl ication t o pr int M onth ac cording t o t he num ber

entered by user (e.g. if user enter 3 then the program should display March).

The pr ogram sh ould al so pr int m essage l ike “ Entered num ber i s invalid” i f

user enter any number greater than 12 or less than 1.

1.12. CASE STUDIES

• Compares Conditional, l ooping a nd j umping st atements of C # pr ogramming

language with other OOP language like Java, C++, etc.

 61

Unit 2: C# Properties

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Using Properties-Get Accessor and Set Accessor

2.4 Let us sum up

2.5 Check your Progress: Possible Answers

2.6 Further Reading

2.7 Assignments

2.8 Activities

2.9 Case studies

2

 62

2.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand concepts of property of

C# programming l anguage. Th ey will a lso l earn ho w t o w ork with va lue of pr ivate

variables of any C# program.

2.2 INTRODUCTION

In t his unit t here w ill be a det ail di scussion on one of the C # co ncept nam ed

‘property’. With the use of special methods of properties we can get or set values in

the local private variables.

2.3 USING PR OPERTIES- GET ACCESSOR, SET
ACCESSOR

Property is a member of a C # class which provides a mechanism to write, read or

compute the value of a private field. Properties can be used just like as a public data

member, but actually they are special methods named accessors. I t allows data to

be accessed easily and helps to support the flexibilityand safetyof methods.

Properties enable a class to expose a public way of getting and setting values, while

hiding implementation or verification code.

GET and SET Accessors:

Generally, in a class, we declare a dat a f ield as private and pr ovide a se t of publ ic

SET and GET methods to access the data fields. It is a good programming practice

to use pr operties as we ca n pr event di rect acce ss to dat a f ields from out side t he

class.

A get property accessor i s used t o r eturn t he pr operty value, and a set property

accessor is used to assign a new value.

 63

Syntax:

<acces_modifier><return_type><property_name>

{

get

 {

 }

set

 {

 }

}

Example:

class PropertyDeclare

{

 private int a;

 public int A

 {

 get

 {

 return a;

 }

 set

 {

 a=value;

 }

 }

}

class UseProperty

{

 public static void Main()

 {

 PropertyDeclare d = new PropertyDeclare();

 d.A = 10; //set accessor will be called to assign value to the property

 int x = d.A; // get accessor will be called to get the value from property

 64

 Console.WriteLine(x);//it will display: 10

 }

}

Code Explanation:

Here i n ab ove exa mple a clas s named P ropertyDeclare hol ds pr ivate i nteger

variable ‘a’.

The next line contains declaration of property named A which have integer return

type. The property A contains get and se t accessors just to assign and r etrieve

value from private integer variable ‘a’.

Next we have another class named UseProperty, in which we have created an

object ‘d’ of PropertyDeclare class.

The next line (d.A=10) is used to assign value to the private integer variable ‘a’ of

PropertyDeclare class using pr operty ‘A’. You can not ice here t hat t he va lue i s

written at the right side of the ‘=’ sign and on the left side we have used property

name with its object name. This line will call the set accessor of the property A.

The next l ine (int x=d.A) is used to get the value from the pr ivate variable ‘a’ of

PropertyDeclare class using property ‘A’. You can not ice here that the property

name is written at right side of the ‘=’ sign and on the left side there is a variable

name. This will call the get accessor of the property A.

Finally, the next line of code will print the value of the variable ‘x’ on the console.

So from the above example it is clear that we can avoid direct access to data field of

a class by declaring them as private, and w e can also get and set the value to that

data field by using property whose scope is public.

 65

Auto implemented properties

With t he use of auto-implemented pr operties, yo u ca n sim plify your co de. T he C #

compiler will obviously provide the backing field for you.

To define an aut o-implemented pr operty we hav e t o use on ly the get and se t

keywords without providing any implementation in property declaration. Refer below

example for auto implemented properties.

Example:

public class StoreProduct

{

 public string pro_name

 { get; set;}

 public int pro_price

 { get; set;}

}

class DisplayProduct

{

 static void Main(string[] args)

 {

 var item = new StoreProduct{ pro_name = “T-shirt”, pro_price = 499};

 Console.WriteLine(${item.pro_name}: price is {item.pro_price}”);

}

}

Output:

T-shirt: price is 499

Here i n above e xample w e have not declar e any private variable t o st ore pr oduct

name or product price, we have created only public properties named pro_name and

pro_price so a C # c ompiler w ill aut omatically create backi ng f ields for b oth t he

properties. A lso not t hat w e have not i mplemented any logic for any get or se t

accessors for both the properties.

 66

The g et a nd se t acc essors will aut omatically st ore and r etrieve va lue t o t he bac k

fields whenever they are being called by the program. In the above example we have

an item variable which will be initialized by object of StoreProduct type and will holds

value for both the properties pro_name and pro_price. The last line of code will print

the product name and price as displayed in the output.

Check your progress:

1. ________and________ ar e t he sp ecial methods (accessors methods) of

property.

2. We ca n pr operty without d eclaring any private va riable and w ithout

implementing get and set accessors (TRUE/FALSE)

2.4 LET US SUM UP

In this unit we have learned about one of the C# programming concept property, we

learn how to get and se t values to private data fields of C# program. We also learn

how to restrict values to certain values by using property concept.

2.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. get and set are the special methods (accessors methods) of property.

2. TRUE.

2.6 FURTHER READING

• In dept h detail can be referred from M icrosoft docu mentation w eb site:

https://docs.microsoft.com/en-us/dotnet/csharp/

• Reference Book: Beginning C# Programming by Benjamin Perkins, Jacob Vibe

Hammer and Jon D. Reid, wrox publication.

https://docs.microsoft.com/en-us/dotnet/csharp/�

 67

2.7 ASSIGNMENTS

• Write C ode f or C # console application in w hich w e ca n on ly store t he

positive va lues between 10 a nd 50 i n t he pr ivate i nteger va riable us ing

property.

2.8 ACTIVITIES

• Create a C # console application to store and retrieve your personal details

like Name, Date of Birth and City using properties.

2.9 CASE STUDIES

• Compare the concepts of property with other programming languages.

 68

Unit 3: Delegates in C#

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Delegates in C#: Single Cast Delegates,Multicast Delegates

3.4 Let us sum up

3.5 Check your Progress: Possible Answers

3.6 Further Reading

3.7 Assignments

3.8 Activities

3.9 Case studies

3

 69

3.1 LEARNING OBJECTIVES

After st udying this un it st udent should be able t o understand ho w t o use d elegate

and where to use delegate in C# programming. They will also learn about single cast

and multicast delegates.

3.2 INTRODUCTION

This unit covers detail discussion Delegates and i ts usages. Delegate is one of the

type i n C# pr ogramming which i s used t o indicate r eference t o method of sp ecific

return t ype w ith sp ecific parameter l ist. Generally delegates used i n eve nt dr iven

programming, j ust l ike i f yo u w ant t o ca ll a sp ecific m ethod f rom l ist o f similar

methods based on some action then you need use delegate.

3.3 DELEGATES I N C #: SI NGLE C AST D ELEGATES,
MULTICAST DELEGATES

Delegate in C# is like as pointer to functions in C/C++. It is a reference type variable

which holds reference to a method. The reference can also be changed at runtime.

Delegate is a type which denotes references to methods with specific return type and

parameter l ist. The del egate i nstance w ill be asso ciated w ith a m ethod havin g

compatible signature and return type when the delegate is instantiated. The method

can be invoked through the delegate instance.

Delegates are used to implement events and call-back methods.

Delegates Declaration:

The D eclaration of del egates determines which m ethod w ill be r eferenced by it. I t

can refer to a m ethod which has the same signature as that of delegate. i.e. if we

have a m ethod which takes two integers as a parameter and another method that

takes a single string parameters, then we need to have two separate delegate type

for each method.

 70

For example, following delegate used to reference any method which has a sing le

integer parameter and returns a string type variable.

public delegate string DelegateFirst (int a);

Syntax:

Delegate <return type><name of delegate><List of parameters>

Once yo u declare a delegate y ou hav e t o cr eate an obj ect of delegate w ith ne w

keyword and associate it with a particular method.

There are two types of Delegates:

1. Single Cast Delegate

2. Multi Cast Delegate

Single Cast Delegate:
Single cast delegate refers only to a single method at a time.

Refer t he f ollowing exa mple f or declaration, i nstantiation and use of a singl e ca st

delegate.

Single Cast Example:

public class DelegateTest

{

 // Delegates declaration without any parameters and return type.

 public delegate void DemoDelegate();

public void First_Method ()

{

Console.WriteLine("First_Method Called…");

 }

public void Second_Method()

{

Console.WriteLine("Second_Method Called…");

}

public void Third_Method()

{

 71

Console.WriteLine("Third_Method Called…");

}

 }

class Program

{

static void Main(string[] args)

{

 DelegateTest test1 = new DeletateTest();

 // Instantiation

DeletateTest.DemoDelegate M1 = new DeletateTest.DemoDelegate

(test1.First_method);

DeletateTest.DemoDelegate M2 = new DeletateTest.DemoDelegate

(test1.Second_method);

DeletateTest.DemoDelegate M3 = new DeletateTest.DemoDelegate

(test1.Third_method);

//Invocation

M1();

M2();

M3();

Console.ReadKey();

 }

}

Output:

First_Method Called…

Second_Method Called…

Third_Method Called…

Code Explanation:

• The delegate is created with following line of code.

public delegate void DemoDelegate();

 72

• There are three methods in the example.

public void First_Method();

public void Second_Method();

public void Third_Method();

• Objects of delegates will be created in the main function.

DeletateTest.DemoDelegate M1 = new DeletateTest.DemoDelegate

(test1.First_method);

DeletateTest.DemoDelegate M2 = new DeletateTest.DemoDelegate

(test1.Second_method);

DeletateTest.DemoDelegate M3 = new DeletateTest.DemoDelegate

(test1.Third_method);

• At last delegates will be called to execute the methods.

M1();

M2();

M3();

Multi cast Delegate:
Multi ca st del egate i s an extension of sin gle ca st d elegates and i t ca n refer t o

multiple methods at a time. In multicast, delegates are combined and a whole list of

methods will be ca lled. For adding methods to delegates ‘+’ or ‘+=’ operator is used

and for removing methods ‘-‘ or ‘-=’ operator is used.

Refers following example for multicast delegates.

Multi cast example:

namespace MulticastDele

{

class MultiDele

 {

public delegate void DisplayMessage(string s);

public void FirstMessage(string msg)

 {

Console.WriteLine("The First Message is : {0}", msg);

 }

 73

public void SecondMessage(string msg)

 {

Console.WriteLine("The Second Message is : {0}", msg);

 }

public void ThirdMessage(string msg)

 {

Console.WriteLine("The Third Message is : {0}", msg);

 }

 }

class Program

 {

static void Main(string[] args)

 {

 MultiDele td = new MultiDele();

 MultiDele.DisplayMessage msg = null;

msg += new MultiDele.DisplayMessage(td.FirstMessage);

msg += new MultiDele.DisplayMessage(td.SecondMessage);

msg += new MultiDele.DisplayMessage(td.ThirdMessage);

msg("This is Multicast Delegates");

Console.ReadKey();

 }

 }

}

OUTPUT:

The First Message is : This is Multicast Delegates

The Second Message is : This is Multicast Delegates

The Third Message is : This is Multicast Delegates

Code Explanation:

• The delegate is created with following line of code.

public delegate void DisplayMessage(string s);

 74

• There are three methods in the example.

public void FirstMessage(string msg)

public void SeondMessage(string msg)

public void ThirdMessage(string msg)

• In the main method object of delegate will be created by following line of code

MultiDele.DisplayMessage msg = null;

• Now al l a bove t hree methods are multicast t o delegates object by following

line of code

msg += new MultiDele.DisplayMessage(td.FirstMessage);

msg += new MultiDele.DisplayMessage(td.SecondMessage);

msg += new MultiDele.DisplayMessage(td.ThirdMessage);

• Now de legate obj ect msg w ill b e ca lled b y passing string par ameter using

following line of code and it will call all the three methods in given sequence.

msg("This is Multicast Delegates");

• Finally all t he t hree m ethods will be ca lled and p rints the message a s

displayed in output.

Check your progress:

1. The return type, types of parameter and no. of parameters of a delegate must

be identical to the referenced method by the delegate. (TRUE/FALSE)

2. The delegate which refers to a single method at a time is known as________.

3. The de legate w hich r efers to m ultiple methods at a t ime i s known

as________.

4. In m ulticast del egates ____ or _____ op erator i s used t o add m ethods to

delegates.

3.4 LET US SUM UP

In this unit we have learned about one of the C# programming concept delegate, we

learn how to use delegate to pass method as a reference. We also learn how to call

multiple methods at a time using multicast delegate.

 75

3.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. The return type, types of parameter and no. of parameters of a delegate must

be identical to the referenced method by the delegate. (TRUE/FALSE): TRUE

2. The del egate w hich refers to a singl e m ethod at a t ime i s known as Single

Cast delegate.

3. The delegate which refers to multiple methods at a time is known as Multi cast

delegate.

4. In m ulticast del egates __+__ or _ +=_ op erator i s used t o a dd methods to

delegates.

3.6 FURTHER READING

• In dept h detail can be referred from M icrosoft docu mentation w eb site:

• Reference Book: Beginning C# Programming by Benjamin Perkins, Jacob Vibe

Hammer and Jon D. Reid, wrox publication.

https://docs.microsoft.com/en-us/dotnet/csharp/\

3.7 ASSIGNMENTS

• Briefly explain why do we need delegate?

3.8 ACTIVITIES

• Create a C# console application to demonstrate concept of delegate in which

a del egate i s used t o r eference a m ethod w hich will per form A ddition/

Subtraction of two integer number and returns an integer value.

3.9 CASE STUDIES

• Find some real life example to compare concept of delegate with it.

https://docs.microsoft.com/en-us/dotnet/csharp/�

 76

Unit 4: Exception Handling in C#

Unit Structure

4.1 Learning Objectives

4.2 Introduction: Exception Handling in C#

4.3 Using the try/catch and finally Block

4.4 Using the throw statement

4.5 Let us sum up

4.6 Check your Progress: Possible Answers

4.7 Further Reading

4.8 Assignments

4.9 Activities

4.10 Case studies

4

 77

4.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand Concepts of Exception

handling i n C # pr ogramming. W ith t he use of E xception handl ing st udents will b e

able to handle any exceptional situations that can cause run-time error, thus avoids

unexpected programme termination.

4.2 INTRODUCTION: EXCEPTION HANDLING IN C#

An exception is a problem that arises during the execution of a program means that

exceptions ar e unf oreseen er rors occurs at r un-time of a pr ogram. For e xample,

some run t ime er rors like f ile I /O er ror, running out of system memory, a d atabase

error, di vide by zero etc. S uch errors can cause u nexpected pr ogram t ermination.

The t echniques to handl e s uch er ror w hen t hey occur i s known as exception

handling.

When exception occur, it throws an object derived from the System.Exception class

and i t w ill be h andled by t ry/catch bl ock of ex ception handl ing. Th e

System.Exception cla ss have m any methods and p roperties to obtain i nformation

about what went wrong.

It has a message property which provides information on what error occur. We can

also obtain information like where the problem occurs through stacktrace property.

Following ar e va rious predefined e xception classe s derived f rom t he

System.SystemException class.

• IOException : To handle I/O Error

• IndexOutOfRangeException: To hand le e rrors generated w hen a m ethod

refers to an array index out of range.

• ArrayTypeMismatchException: T o handl e w hen t ype i s m ismatched w ith t he

array type.

• NullReferenceException: To han dle er rors generated from referencing a null

object.

 78

• DivideByZeroException: To h andle errors generated from dividing a dividend

with zero.

• OutOfMemoryException: To ha ndle errors generated f rom i nsufficient f ree

memory.

4.3 USING THE TRY/CATCH AND FINALLY BLOCK

try/catch Block
We use try block to partition code which may raise some exception during execution

of program. There is an associated catchblock which is used to handle any resulting

exception. The t ry blocks without an asso ciated ca tch or f inally block will ca use

compiler error.

The ca tch block specifies the t ypes of exception to ca tch. Sometime a t ry block is

followed by multiple catch block, which m ay use f or di fferent exception filters. The

multiple catch blocks are eva luated in top to bot tom approach, and on ly one catch

block will be executed for each exception. The f irst ca tch block generally specifies

exact types of thrown exception. If no catch block has matching exception filter, then

a catch block that does not have any filter is selected.

Finally Block
The f inally bl ock p laced af ter try or ca tch bl ock. It w ill al ways be e xecuted

irrespective of the exception is thrown or not. This block generally used for cleaning-

up of code. e.g. for disposing an unmanaged object, closing database connections,

etc…

SYNTAX:

try

{

 // Code which can cause run time exception.

}

catch (SomeSpecificException ex)

{

 79

 // Code to handle the exception.

}

finally

{

//Finallly block code goes here.

}

Example:

a) C# code without try/catch Block
using system;

public class DemoException

{

public static void Main(string[] args)

{

 int x=5;

 int y=0;

 int z=x/y;

 Console.WriteLine(“Code after arithmetic operations…”);

}

}

OUTPUT:

Unhandled Exception: System.DivideByZeroException: Attempted to divide by

zero.

b) C# Code with try/catch and finally block

using system;

public class DemoException

{

public static void Main(string[] args)

{

try

{

 int x=5;

 80

 int y=0;

 int z=x/y;

}

Catch (Exception e)

{

Console.WriteLine(“Inside Catch block: {0} Exception thrown.”

e.Message);

}

finally

{

 Console.WriteLine(“This code is from Finally block”);

}

}

}

OUTPUT:

Inside catch block: Attempt to divide by zero Exception thrown.

This code is from Finally block

Code Explanation:

• In example (a) there are two integer variables ‘x’ and ‘ y’ initialized to 5 and 0

respectively, In next line of code there is a integer variable ‘z’ which will stores

the result of division operation performed on variable x and y.

• The pr ogram w ill t erminate unex pectedly w ith er ror “ Unhandled Exception:

System.DivideByZeroException: Attempted to divide by zero.” as in t he

division operation the denominator (variable ‘y’) contains value zero. And also

this type of run-time error cannot be determined at compile time.

• The co de given i n e xample (b) pr ovides solution f or t he er ror occurred i n

example(a) using exception handling with try/catch block.

• Here i n example (b) t he t ry block contains code which i s prone t o generate

any run t ime er ror (or ex ception). The t ry bl ock is followed by ca tch bl ock

which is used to catch any exception thrown by the try block.

 81

• The ne xt b lock is catch bl ock and t he co de i nside c atch bl ock w ill o nly be

executed when t ry block throws an ex ception. H ere i n example,

DivideByZeroExceptionwill be thrown by the try block and the catch block will

catch i t and w ill pr int t he message “Inside catch block: Attempt to divide by

zero Exception thrown.”

• There i s a f inally block in t he ex ample, w hich w ill al ways be exe cuted

irrespective of any exception t hrown. S o f or eve ry execution i t will pr int t he

message “This code is from Finally block”.

Check your progress 1

1. The ca tch bl ock will only be e xecuted w hen co de f rom t ry bl ock throws an

exception. (TRUE/FALSE).

2. Finally block will not be exe cuted i f t ry block does not t hrow any exception.

(TRUE/FALSE)

4.4 USING THE THROW STATEMENT

In t he pr evious section we seen t hat how t o hand le e xceptions which is raised by

CLR. In this section we will learn how to raise user defined exception manually using

throw st atement. A ny exception derived f rom E xception class ca n be r aised usi ng

the t hrow keyword. Thi s kind of ex ception handl ing i s generally kn own as cu stom

exception handling.

EXAMPLE:

class Program
{

static void Main(string[] args)
{

int OrderQty;
Console.WriteLine("Enter number of Notebook you want to buy (Total
20 in Stock):");
OrderQty = Convert.ToInt32(Console.ReadLine());
try
{

if (OrderQty == 20 || OrderQty < 20)
{
Console.WriteLine("Congratulations! You have bought {0}
Notebooks..!!!", OrderQty);

 82

Console.ReadLine();
}
else
{
throw(new OutofStockException("OutofStockException Raised:
The number of item you want to buy is out of stock. Please enter
total item number within stock"));
}

}
catch (OutofStockException oex)
{

Console.WriteLine(oex.Message.ToString());
Console.ReadLine();

}

}
 }

//Custome Exception - OutofStockException
public class OutofStockException : Exception
{

public OutofStockException(string message) : base(message)
{
}

}

OUTPUT:1 (It will not railse any exception and shows the Output)

Enter number of Notebook you want to buy (Total 20 in Stock): 12

Congratulations! You have bought 12 Notebooks..!!!

OUTPUT:2 (It will raise OutofStockException)

Enter number of Notebook you want to buy (Total 20 in Stock): 21

OutofStockException Raised: The number of item you want to buy is out of stock.

Please enter total item number within stock"

Code Explanation

• In t he a bove e xample t here i s a cu stom e xception class named

“OutofStockException”. This class used to catch exception raised by catch

block when use r ent er l arger num ber t han t he st ock available. A ll cu stom

exception class must be der ived from Exception base class and must have a

 83

constructor. H ere i n exa mple i t co ntains a co nstructor to th row st ring

message.

• In the main method, we ask user to enter quant ity of notebook to buy. If the

entered quantity is less than the stock than “Congratulations…” message will

be displayed but if the buying quantity is greater than stock available than the

OutofStckException w ill be r ailsed using t hrow st atement and print er ror

message The number of item you want to buy is out of stock. Please enter

total item number within stock

Check your progress 2

1. In ex ception hand ling _____ ____ st atement i s used to m anually raise a n

exception.

2. All user defined exception must have to inherit Exception class (True/False).

4.5 LET US SUM UP

In this unit we have learned how to handle run time errors using Exception handling.

We can now be able to use understand various blocks of exception handling e.g. try,

catch and finally. W e have also l earned u se of t hrow st atement i n us er defined

exception handling.

4.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your progress 1

1. TRUE

2. FALSE

Check your progress 2
1. In ex ception hand ling throw statement i s used t o m anually raise a n

exception.

2. TRUE

 84

4.7 FURTHER READING

• In dept h detail can be referred from M icrosoft docu mentation w eb site:

• Reference Book: Beginning C# Programming by Benjamin Perkins, Jacob Vibe

Hammer and Jon D. Reid, wrox publication.

https://docs.microsoft.com/en-us/dotnet/csharp/\

4.8 ASSIGNMENTS

• Briefly explain the importance of exception handling in C# programming.

4.9 ACTIVITIES

• Create a C# console application to demonstrate the use of Exception handling

with multiple catch blocks.

4.10 CASE STUDIES

• Compare Exception Handling mechanism of C# with other OOP languages.

https://docs.microsoft.com/en-us/dotnet/csharp/�

 85

 Block-3

Inheritance, Interface and

Generics

 86

Unit 1: Inheritance In C#

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Inheritance

1.4. Types of Inheritance

1.5. Implementation of Inheritance in C#

1.6. Let us sum up

1.7. Check your Progress: Possible Answers

1.8. Further Reading

1.9. Assignments

1.10. Activities

1

 87

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Inherit class.

• Reuse and enhance functionality of base class.

• Use different types of inheritance with C#.

• Understand and learn concept of OOPs.

1.2 INTRODUCTION

Object oriented programming provides code reusability and very compact to manage

code. O bject ca n hol d dat a and co de (procedure) t o per form sp ecific kind of

operation on data.

OOPs provide code reusability functionality by using inheritance. All object oriented

programming l anguages support i nheritance f or e xtending e xisting f acility of one

class into another class.

In this unit you are going to learn inheritance by using C#.

1.3 INHERITANCE

Inheritance i s a pr ocess of acq uiring pr operties and a ssets of the per son b y legal

recipient in general terms. Same way in OOPs one class can inherits properties and

attributes of one class into another class.

A class which is inherited by other class is recognising as parent class or base class.

In .net framework System.Object is ultimate base class of all other classes.

 A class which is inherited from base class is known as child class or derived class

and i t i s inherits members of base class. Derived cl ass can extend f unctionality of

base class as per requirements. Derived class can override members of base class

to provide different implementation according to requirement.

Derived cl ass can i nherits public, pr otected m embers of base class and internal

members only if base class and derived class available in same assembly.

To perform inheritance in C# special operator : is used.

 88

Syntax:

<access modifier> Class <derived class name> : <base class name>

{

}

Check your Progress1

1. How you can categorise System.Object class in .Net?

A. Derived Class

B. Base Class.

C. Ultimate base class

2. In OOPs code reusability achieve by ______________.

A. Polymorphism

B. Inheritance

C. Encapsulation

D. Overriding

1.4 TYPES OF INHERITANCE

There are several forms of inheritance

• Single inheritance

• Multiple inheritance

• Multilevel inheritance

• Hierarchical inheritance

• Hybrid inheritance

C# do es not su pport m ultiple class inheritance b ut su pport m ultiple i nterface

inheritance.

1.4.1 Single Inheritance

 89

In sing le inheritance one class der ived f rom ot her class. Loo k in f igure 1C lass2

derived from Class1.

1.4.2 Multiple Inheritance
In m ultiple i nheritances one c lass derived f rom m ore t han one class. C # on ly

supports multiple interface inheritance.

1.4.3 Multilevel Inheritance
In multilevel inheritances one class derived from other derived class. Like grandson

inherits properties of grandfather same way in figure 3 Class3 acquire properties and

attributes of Class1 by inherits from Class2

1.4.4 Hierarchical inheritance
In h ierarchical i nheritance one cl ass can b e der ived by more t han one cla ss. Li ke

children of same parents share common properties of their parent. Look in f igure 4

where Class1 is inherited by Class2, Class3 and Class4.

 90

1.4.5 Hybrid inheritance

Hybrid inheritance is mixture of multiple and multilevel inheritance. Like child acquire

properties of f ather’s father and mother’s father-in-law from f ather and m other. C#

not supports hybrid inheritance for class.

Check your Progress 2

1. Can we do Multiple class inheritance in C#.NET?

A. Yes

B. No

2. Tick mark [√] on types of inheritance which are supported by C#.NET for class

inheritance.

A. Single inheritance []

B. Multiple inheritance []

C. Multilevel inheritance []

D. Hierarchical inheritance []

E. Hybrid inheritance []

1.5 IMPLEMENTATION OF INHERITANCE IN C#

Before we start to implement inheritance we need to define visibility of members of

base class by using access modifier. Following is list of access modifier with visibility

of each access modifier.

 91

Access Modifier Visibility

private Members only accessed inside of class

public Members accessible by any code anywhere.

protected Members accessed inside of class and by derived class

internal Members accessible in same assembly

Protected internal It is combination of protected and internal modifiers

Let’s define class for Person which contains attribute of person.

public class Person

{

 public string Name {get;set;}

public string Address {get;set;}

public DateTime DateOfBirth {get;set;}

}

Now derive Student class from Person class by using inheritance.

public class Student : Person

{

 public int RollNo {get;set;}

public string ProgramName {get;set;}

public string Semester {get;set;}

}

In above example Student become derived class and Person become base class.

Student class can be access all properties of base class as in Person class all

properties mark with “public” access modifier.

Let’s make instance of Student class and try to access member of base class.

 92

public static class Program

{

public static void Main()

{

//Make instance of Student class

Student obj = new Student();

obj.RollNo = 19;

obj.Name = “Vidit”;

obj.Address = “Ahmedabad”;

obj.ProgramName = “M.Sc.(IT)”;

obj.Semester = “II”;

obj.DateOfBirth = new DateTime(1999,31,12);

//put the code to print students details on console

…………………………

}

}

Have you seen that all the members of base class are accessed by using instance of

derived class? Try yourself and implement above functionality.

C# provides virtual and override keywords to mark property or method of base class

can be ov erride by derived c lass. I f we no t m ark member of ba se class a s virtual

then derived class can define member with same name and same signature it hides

base c lass version. Following example explains you how you can mark base class

method as virtual.

namespace MethodOverriding

{

class BaseClass

 {

 93

public virtual void DemoMethod(string msg)

 {

Console.WriteLine("This is base class method " + msg);

 }

 }

class DerivedClass : BaseClass

 {

public override void DemoMethod(string msg)

 {

string s = "This is Derived Class";

 s = s + " " + msg;

 Console.WriteLine(s);

 }

public void NewMethod()

 {

base.DemoMethod("Testing");

 }

 }

}

In above example B aseClass’s D emoMethod m arked w ith virtual keyword so you

can sa y DemoMethod i s virtual m ethod and i t ca n b e ove rride by derive class by

using override keyword.

To access base class method f rom der ived class C# provides base keyword. Look

code of N ewMethod() w here DemoMethod of bas e class called by using base

keyword.

 base.DemoMethod("Testing");

 94

If vir tual and der ived ke ywords not use d for m ethod w ith sa me nam e a nd sa me

signature in base class and derived class respectively Microsoft Visual Studio shows

you warning. To avoid the warning mark derived class method with new keyword.

Check your Progress 3

1. The member marked with protected keyword would be _______________.

A. accessible anywhere

B. accessible only inside of class

C. accessible inside of class and derived class

D. not accessible

2. override keyword used by member of derived class.

A. True

B. False

1.6LET US SUM UP

In t his unit yo u l earn about co de r eusability and f unctionality extension by usin g

inheritance. I nheritance i s the process of acq uiring functionality of one c lass into

other class. C# supports single, multilevel and hierarchical inheritance.

C# pr ovides private, publ ic, p rotected, i nternal an d pr otected i nternal acce ss

specifiers. C# compiler by default apply private access modifier to members of the

class.

To perform inheritance C# use “:” operator.

In .Net every class is by default inherited by System.Object class if not inherited by

other class.

To ex tend t he f unctionality of bas e class ove rride m embers by using override

keyword.

 95

1.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1
Answer – 1: C

In .Net every class is by default inherited by System.Object class if not inherited by

other class.

Answer – 2: B

You can reuse and extend functionality by using inheritance.

Check your Progress 2
Answer – 1: B

Only multiple interface inheritance is supported by C#.

Answer – 2: A, C and D

Check your Progress 3
Answer – 1: C

Protected members are accessed by derived class and same class where they are

defined.

Answer – 2: A

override keyword used to override virtual member of base class.

1.8 FURTHER READING

• Chapter-4 Inheritance

Christian Nagel, B ill E vjen, Ja y Glynn, K arli W atson, M organ S kinner,

Professional C# 2012 And .Net 4.5, Wrox Publication

• Inheritance (C# Programming Guide)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-

and-structs/inheritance

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance�
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance�

 96

1.9ASSIGNMENTS

• Implement multilevel inheritance for Person, Student and Exam class. Identify

members of Exam class yourself and write C# code.

1.10ACTIVITIES

• Activity-1

Search O bject class from obj ect br owser in visu al st udio and list a ll t he

methods implemented in System.Object class with parameters list and return

types.

• Activity-2
Try to perform multiple class inheritance and note what type of error you got

and why.

 97

Unit 2: Interfaces In C#

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Interface

2.4 Define Interface in C#

2.5 Interface Inheritance

2.6 Let us sum up

2.7 Check your Progress:Possible Answers

2.8 Further Reading

2.9 Assignments

2.10 Activities

2

 98

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Create and use interface.

• Implement members of interface by using interface inheritance.

• Perform multiple interface inheritance.

• Understand and learn concept of OOPs.

2.2 INTRODUCTION

An i nterface pr ovides structure f or functionality that ot her classe s implement

differently and acco rding t o r equirement but use co mmon signat ure. I nterface i s

basically used by developers who w ant t o pr ovide common st ructure for ot her

developers who ar e going t o i mplement f unctionality of i nterface. I n gener al t erms

interface can be anyt hing that provides functionality but it hide how the functionality

works, For example breaking system of car or bike.

In this unit you are going to learn how to create interface and implement interface by

using interface inheritance.

2.3 INTERFACE

Interface declar es members like pr operties, m ethods, eve nts, i ndexers w ithout

implementation. Interface does not contain data members like fields or variables and

constructor. Interface is used to define functionality which is implemented by others

as per requirements but by using common interface. You cannot make instance o f

interface. If we want to use functionality of interface first we need to implement it in

other class by interface i nheritance. I nterface i s more l ike abst ract class but some

time abstract class have implemented members while in interface only declaration of

members.

In .Net interface declaration is more similar like class. To declare interface “interface”

keyword is used by c#. Interface is not permit use of access modifier for declaration

of members. In .Net class library all interface name start with capital – I alphabet. For

example IEnumerable, IEnumerator, ICollection, IDisposable etc.

 99

Syntax:

interface IInterfaceName

 {

 }

Check your Progress1

1. Which keyword used to define interface in C#?

A. abstract

B. class

C. interface

D. override

2. ____________ access modifier used by interface to define its members.

A. public

B. private

C. protected

D. None of these

2.4 DEFINE INTERFACE IN C#

This section descr ibes how t o def ine i nterface by using ex ample of m obile phone

functionality. Let’s make list of functionality provided by basic mobile phone.

• Wireless communication

• Make phone call

• Receive call from other

• Get SMS

• Send SMS etc.

Now make interface for mobile phone that compulsory bind other peoples those want

to make mobile phone compulsory provides functionality mentioned above.

Let’s create interface with name IMobilePhone and define functionality as per list.

 100

publicinterface IMobilePhone

 {

void MakeCall(long PhoneNo);

long ReceiveCall();

void SendSMS(long PhoneNo, string Message);

string ReceiveSMS();

 }

In above example t he I MobilePhone i nterface cr eated w ith declaration of f our

methods with sign ature and without ac cess modifier. M akeCall m ethod r eturn

nothing an d t ake pho ne num ber as parameter. ReceiveCall m ethod r eturns phone

number and not take any arguments. SendSMS method returns nothing and takes

phone number and message as parameters. ReceiveSMS return message as string

and not t ake any argument. People w ho use t he interface m ust i mplement al l

methods which declared with same signature.

Check your Progress 2

1. Can we use access modifier to declare interface in C#?

A. Yes

B. No

2. We can make instance of interface in C#.

A. True

B. False

2.5 INTERFACE INHERITANCE

Interface i s j ust a gui deline f or f unctionality so r esponsibility of i mplementing t he

functionality is on the class who inherit t he interface. I nterface inheritance can be

performed same as class inheritance. Multiple interface inheritance is possible in C#.

If class inherit i nterface and n ot implement methods define in interface than visual

 101

studio sh ows compile t ime er ror l ike cla ss does not i mplement m ember of the

interface for each member. Look in figure-1 for error message.

Figure-2.1 Show error

To view po tential f ixes from visual studio p ress shortcut key Ctrl+. or right click on

interface name and select “Quick Actions and refactorings..” menu item from context

menu. Look in figure-2 to view context menu items.

Figure-2.2 Context Menu

Click on Q uick Actions and r efactorings..which sh ows you det ails of m embers of

interface which you need to implement and opt ions to implement interface. Look in

figure-3 top left corner for “Implement interface” options.

 102

Figure-2.3 Potential Fixes

Now click on implement interface option which create skeleton for each members of

interface with one line code.

throw new NotImplementedException();

Which raise runtime exception “NotImplementedException” i f you are not write your

own code for members. Look in Figure-4 for action taken by visual studio.

Figure-2.4 Default implementation of interface

 103

Let’s inherit IMobilePhone interface in BasicPhone class and include following code.

public class BasicPhone : IMobilePhone

{

 public void MakeCall(long PhoneNo)

 {

 //Include code to make call

 Console.WriteLine(“Connecting to phone no – “ + PhoneNo);

 }

public long ReceiveCall()

 {

//Detect phone no from caller and return

 //For testing purpose use any number and return

 long phoneNo = 9999999999;

 return phoneNo;

 }

public string ReceiveSMS()

 {

string message = “This is test message”;

 return message;

 }

public void SendSMS(long PhoneNo, string Message)

 {

throw new NotImplementedException();

 }

}

 104

In t his example BasicPhone cl ass implement basic f unctionality of I MobilePhone

interface. To use functionality use BasicPhone class and make instance of it.

public static class Program

{

public static void Main()

{

//Make instance of BasicPhone class

BasicPhone obj = new BasicPhone();

obj.MakeCall(9999999999);

Console.WriteLine(obj.ReceiveCall());

Console.WriteLine(obj.ReceiveSMS());

//SendSMD throw exception as functionality not implemented

obj.SendSMS(9999999999,”This is test message”);

Console.ReadLine();

}

}

When yo u are exe cute above co de yo u w ill get r untime ex ception because

SendSMS method i s implemented by default and i t t hrow exception. To overcome

this problem modify functionality as follow

public void SendSMS(long PhoneNo, string Message)

 {

Console.WriteLine(“Message –“ + Message + “ sent to phone no – “ + PhoneNo);

 }

You can try to implement IMobileInterface differently as you like but compulsory use

same signature and return type for each method.

Multiple interface inheritance can be performed by providing “,” separated list of

interfaces.

 105

public class BasicPhone : IMobilePhone, IDisposable { ……. }

IDisplosable is inbuilt interface provided by .net framework to implement. It is simple

interface contains only declaration of Dispose() method.

Check your Progress 3

1. What is use of shortcut key – “Ctrl+.” in visual studio?

A. Implement interface

B. Show potential fixies

C. Show Error List

D. None of Above

2.6LET US SUM UP

In t his unit you l earn about i nterface and i mplementation of i nterface. An Interface

contains only declaration of methods, properties, events and indexers. Interface can

be inherited same way as class inherited in C#. For example

public class BasicPhone : IMobilePhone { }

It is compulsory to implement a ll members of interface i f interface inherited by any

class. Multiple interface inheritance is possible in C#.

.Net Fr amework provides numbers of i nterfaces for v arious functionality

implementations.

2.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1
Answer – 1: C

In C# “interface” keyword is used to define interface.

Answer – 2: D

C# not allowed and access modifiers for members of interface.

 106

Check your Progress 2
Answer – 1: A

You can set visib ility of i nterface by using access modifier but not f or members of

interface.

Answer – 2: B

You cannot make instance of interface as it is only guideline for implementers.

Check your Progress 3
Answer – 1: B

Shows potential fixies by visual studio for code line where cursor is putted.

2.8 FURTHER READING

• Christian Nagel, B ill E vjen, Ja y Glynn, K arli W atson, M organ S kinner,

Professional C# 2012 And .Net 4.5, Wrox Publication

• Interfaces (C# Programming Guide)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/

2.9ASSIGNMENTS

• Create interface f or contacts and i mplement i t i nto B asicPhone class with

IMobilePhone.

2.10ACTIVITIES

• Activity-1

Make list of interfaces and its members defined in System interface.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/�

 107

Unit 3: Structures in C#

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Structure

3.4 Difference between Class and Structure

3.5 Create structure in C#

3.6 Let us sum up

3.7 Check your Progress: Possible Answers

3.8 Further Reading

3.9 Assignments

3.10 Activities

3

 108

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Create and use structure.

• Differentiate class and structure

• Improve performance for simple user define types

3.2 INTRODUCTION

There are two types in C#, Value types and reference types. Structure is value types

and used to create user define composite types like class. Class is reference types.

In this unit you are going to learn how to create and use structure in C# and compare

with class.

3.3 STRUCTURE

Structure is by nature value types. It is implicitly inherited from System.ValueType. It

hold members like fields, properties, parameterized constructor and static parameter

less constructor, methods, i ndexers, oper ators and eve nts. S tructure i s used t o

create use r def ine va lue t ypes for r elated dat a. For ex ample i f yo u w ant to st ore

information of st udent and m ake gr oup of i nformation t han st ructure i s helpful t o

create group of Student Id, Name, Program name and other information. Structure

can be created by using “struct” keyword in C#.

Structure i s useful t o cr eate sim ple l ight w eight va riables of r elated t ypes. . Net

framework use structure to store information of point, color etc… Structure is useful

in situation like when create array of structure is more beneficial as compare to array

of obj ects of any class because each el ement of ar ray contains references of t he

objects and obj ects data w hile st ructure obj ects directly store va lue a nd sa ve

memory.

Syntax:structStructName

 {

 }

 109

Example:

Make structure for student.

struct StudentStruct

{

int RollNo;

string StudentName;

string ProgramName;

}

Suppose you want to store cu rsor posit ion on t he screen or any point on chart by

using X axis and Y axis. Structure can be created as follow.

struct MyPoint

{

int X;

int Y;

}

Structure ca n su pport onl y parameterized co nstructor and st atic parameter l ess

constructor. P arameter l ess constructor f or st ructure i s not al lowed. Tr y to create

parameter less constructor i n C #, V isual Studio sh ows you er ror – “Struct ca nnot

contain explicit parameterless constructors”. Look in f igure 3.1 for error information.

Default parameter less constructor is supported by .net framework. Figure 3.2 shows

static parameter less constructor.

 110

Figure 3.1 Parameter less constructor

Constructor i s not al lowed initialized i nstance m ember f ield i n C# and i f yo u t ry to

Figure 3.2 – Parameter less static constructor

 111

declare v isual studio shows error l ike “ ’StructName’: cannot have instance property

or field initializers in structs”. Look in figure 3.2.

A st ructure cannot be created by using class inheritance but can be inherited f rom

interface. A structure cannot become base for other class or structure.

Check your Progress1

1. Struct is ____________ type in C#.

A. reference

B. value

C. object

D. none of these

2. Structure can be created by using class inheritance.

A. True

B. False

3.4 DIFFERENCE BETWEEN CLASS AND STRUCTURE

Sr. No Class Structure
1. Class is reference type. Structure is value type.

2.
We can declare parameter

less constructor in class.

We cannot declare parameter less

constructor in structure. It allows

parameterized constructor and

static parameter less constructor.

3.
Class must instantiated by

new keyword.

Structure can be instantiated

without new keyword but in this

case you are not able to use all

members.

4.
Class can be a base class

of other class.

Structure cannot be a base for

other structure or class.

5.
Class can be derived from

other class or interfaces.

Structure only derived from

interfaces.
Table-3.1Difference between Class and Structure

 112

Check your Progress 2

1. Structure can be inherited from multiple interfaces.

A. True

B. False

3.5 CREATE STRUCTURE IN C#

Structure is used to create user defined value types which improve performance as

compare to class. Let’s consider example of colour, colour is a combination of RGB

where R for red, G for Green and B for Blue. As the intensity of RGB changed the

colour changed accordingly. To st ore any colour you need R GB values and values

are between 0 and 255 for R, G and B. To represent colour create structure that hold

values of R , G and B as fields and one par ameterized co nstructor t hat i nitialize

structure fields.

struct MyColour

 {

byte R;

 byte G;

 byte B;

public MyColour(byte r, byte g, byte b)

 {

 R = r;

 G = g;

 B = b;

 }

 }

 113

The above code creates structure with name MyColour with R, G and B f ields and

one constructor. The datatype of R, G and B is taken as byte because the range is

between 0 and 255.

Let’s make instance of structure in Main method by using new keyword same like we

make instance of class.

static void Main(string[] args)

 {

 MyColour myColour = new MyColour(255, 255, 255);

 }

The constructor of MyColour structure initialize R, G and B fields. But our fields are

private so we are not able to get values. Let’s create properties for RGB and method

GetRGB() for MyColour structure.

struct MyColour

 {

byte R;

byte G;

byte B;

public MyColour(byte r, byte g, byte b)

 {

 R = r;

 G = g;

 B = b;

 }

public byte Red

 {

set

 114

 {

 R = value;

 }

get

 {

return R;

 }

 }

public byte Green

 {

set

 {

 G = value;

 }

get

 {

return G;

 }

 }

public byte Blue

 {

set

 {

 B = value;

 }

 115

get

 {

return B;

 }

 }

public void GetRGB()

 {

Console.WriteLine("R = {0} , G = {1}, B = {2} ", R,G,B);

 }

 }

Now m ake ch anges in M ain method and s et va lues of R GB by usin g r espective

properties and get by using method.

static void Main(string[] args)

 {

 MyColour myColour = new MyColour();

 myColour.Red = 155;

 myColour.Green = 72;

 myColour.Blue = 180;

myColour.GetRGB();

Console.WriteLine();

 }

OUTPUT:

R = 155, G = 72, B = 180

 116

In above c ode def ault co nstructor i s used t o m ake i nstance of st ructure MyColour

and initialized RGB values by using properties. You can get value of R, G and B by

using GetRGB method that display console message.

In ca se of onl y declaration of structure C# co mpiler sh ows you er ror l ike “ Use of

unassigned l ocal va riable” w hen t rying t o acce ss members of st ructure. Look in

figure 3.3. Structure is value type so you cannot initialize with null value.

Figure 3.3 – Uninitialized structure variable

Check your Progress 3

1. “MyColour testColour = null;” statement is valid or not for MyColour structure.

A. Is Valid

B. Is Not Valid

3.6LET US SUM UP

In this unit you learn about structure. Structure is value type. Members of structure

are fields, methods, properties, events, indexer and constructor.

 117

C# automatically create default constructor for st ructure. Static parameter less and

parameterized constructors are supported by C#.

Structure i s useful f or cr eating single va riable t hat hol d r elated dat a. For example

position of cursor, colour, point etc.

Structure c annot be base of ot her st ructure or class. S tructure onl y inherits from

interface.

.Net Fr amework provides numbers of st ructures for va rious functionality

implementations.

3.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

Answer – 1: B

Structure is value type.

Answer – 2: B

Structure can be inherited from interface only.

Check your Progress 2

Answer – 1: A

Structure supports multiple interface inheritance.

Check your Progress 3

Answer – 1: B

Structure is value type so you cannot initialize with null.

3.8 FURTHER READING

• Herbert Schildt, C# 4.0: The Complete Reference, Mc Graw Hill publication

• Using Structures (C# Programming Guide)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-

and-structs/using-structs

 118

3.9ASSIGNMENTS

• Create st ructure f or employee t o st ore em ployee r elated information l ike I d,

Name, Join date, basic salary.

3.10ACTIVITIES

• Activity-1

Make list of structure and its members defined in System interface

 119

Unit 4: Operator Overloading and
Generics in C#

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 Operator Overloading in C#

4.4 Using Generics in C#

4.5 Let us sum up

4.6 Check your Progress: Possible Answers

4.7 Further Reading

4.8 Assignments

4.9 Activities

4

 120

4.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Create and use user define operators

• Works with generics types

• Create generics types

4.2 INTRODUCTION

There ar e m any operators defined i n C# and class ified as arithmetic operators,

assignment operators, logical operators, relational operators, bi twise operators etc.

An operator is a symbol or group of symbols (Characters) that apply on one or more

operands in expression or statements.

An operator takes on operand is called unary operator. For example increment(++)

or decrement(--) operators are unary operators.

 An oper ator t hat t akes two o perands is ca lled binary operator. For example

arithmetic operators (+,-,*,/,%)

int SUM = 12+15;

An oper ator t hat takes three oper ands are ca lled t urnery operator. For Example

conditional operator (? :). That takes three operands.

int A = 100, B = 200;

int LargeNo = (A>B) ? A : B;

In t opic 4.3 yo u ar e goi ng t o l earn oper ator ove rloading i n C #. I n C # t he pl us

operatot(+) is used for two different type of operation like sum of numbers and i t is

also used for performing string concatenation operation.

In t opic 4.4 yo u ar e going t o learn about generics. Generic is a m echanism t hat

provides type sa fety to use r def ined dat a st ructures. A nd i t avoids boxing and

unboxing when creates collection of generic types.

 121

4.3 OPERATOR OVERLOADING IN C#

Overloading is types of polymorphism and i t gives different meaning to operator as

defined by use r. Overloading i s a t echnique use d t o def ine singl e i dentifier f or

performing multiple operations. C# supports two types of overloading.

1. Method overloading

Two or m ore m ethods defined w ith sa me nam e and di fferent parameters in

same class

2. Operator overloading

Operator overloading is the method to give distinct meaning to standard C#

operators with user defined type such as class or structure.

C# provides supports to user def ined types to overload operators by using special

keyword “ operator” and by defining st atic function. A ll st andard oper ators are not

support operator overloading but some supports like +, -, !, ~, ++,--, +, -, *, /, %, &, |,

^, <<, >>, Relational operators (==, !=, <, >, <=, >=), true, false must be overloaded

in pairs. For Example (== and !=). Rest of the C# operators cannot overload.

To overload an oper ator on a user define class or structure, First declare operator

in user define types and follow following rules.

1. Operator must be public and static

2. Must be at tach m ethod w ith na me or symbol by using st atement

“operator XYZ”

3. For unary operator define one parameter

4. For binary operator def ine two parameters and any one parameter

must be with same type as Class or Structure that defines operator.

5. The return type for binary operator can be any except void type.

6. For unary type operator return type can be any except void type but

for true and false must be Boolean and overload in pair.

7. For + + and – operator r eturn t ype m ust be class type or st ructure

type where operator declare.

 122

Unary operators have one parameter, and binary operators have two parameters. In

each case, at least one parameter must be the same type as the class or structure

that declares the operator.

Syntax:

public static <return type> operator <op symbol> (parameters list){ ----}

Example:

The + sym bol i s used as plus operator f or n umeric operands and st ring

concatenation operator for string type operand. Let ’s overload + symbol for sum of

two matrix type object. To overload + symbol first create class with name Matrix that

hold va lue of m atrix and p erform oper ator ove rloading f or su m oper ation of t wo

matrix and display elements of matrix.

class Matrix

 {

int A, B, C, D;

public Matrix(int R1E1, int R1E2, int R2E1, int R2E2)

 {

 A = R1E1;

 B = R1E2;

 C = R2E2;

 D = R2E2;

 }

//overload + operator for sum of two matrixes

public static Matrix operator + (Matrix matrix1, Matrix matrix2)

 {

//Make instance of Matrix class that hold sum of two matrix

Matrix S umOfMatrix = n ew Ma trix(matrix1.A + ma trix2.A, ma trix1.B+

matrix2.B, matrix1.C + matrix2.C, matrix1.D + matrix2.D);

return SumOfMatrix;

 123

 }

public void GetMatrix()

 {

Console.WriteLine(A + "\t" + B);

 Console.WriteLine(C + "\t" + D);

 }

 }

Above code f irst create Matrix class with one constructor that initialize e lements of

2X2 matrix and store in local variables A,B,C and D.

Operator + overload takes two argument both of matrix type and make sum of each

element of both matrixes matrix1 and matrix2 and store in new matrix SumOfMatrix.

GetMatrix m ethod r eturn each el ement on co nsole by using C onsole.WriteLine

statement.

To test the functionality works create two instance of Matrix class and make sum of

both as per below code.

class Program

 {

static void Main(string[] args)

 {

 Matrix M1 = new Matrix(1, 1, 1, 1);

 Matrix M2 = new Matrix(1, 1, 1, 1);

 Matrix M3 = M1 + M2;

M3.GetMatrix();

Console.ReadLine();

 }

 }

 124

The output of above code is

2 2

2 2

The st atement “ Matrix M3 = M1 + M2 ;” dem onstrate use of oper ator ove rloading

where M1 and M2 both are Matrix type instance and the sum of this two matrix store

in M3 matrix by using + operator. In this program + operator is used to make some of

two matrixes.

Check your Progress1

1. + operator is ____________ type of operator

A. Unary

B. Binary

C. Turnery

D. None of these

2. “operator” is keyword in c#.

A. True

B. False

3. For “-“operator, ____________ is the return type.

A. void

B. int

C. class type that declare “-“ operator

D. None of these

4.4 USING GENERICS IN C#

Generics is very powerful f eatures of t he C# pr ogramming l anguage and i t was in

traduce when .Net framework 2.0 released. Before that programmers are not able to

apply same logic on different data types by using single c lass implementation. For

each t ype t hey need t o w rite s eparate co de and i f obj ect t ype co llection obj ect

created than the boxing and unboxing process compulsory performed while storing

and r etrieving obj ects in and f rom co llection obj ect. For ex ample w orking w ith

ArrayList or HashTable objects where you are able to store any type of values.

 125

Generics are helpful to create parameterized types for classes, structures, methods,

interfaces etc. W ith t he hel p of gener ics you ar e a ble t o cr eate gener ic classes,

generic methods or generic interfaces.

Before ge nerics C# depend o n obj ect t ype t o cr eate gener alized co de t hat i s

reusable with di fferent data types but i t required boxing and un boxing and i t i s not

provides type sa fety. To pr ovide t ype sa fety and avo id t ype ca sting M icrosoft

introduce generics. For example set and get value of specific type. Type may be int,

float or any other users define type like Student or Employee. Let’s create one class

that provide facility to get or set value of integer number.

class DemoClass

{

 int number;

 public void SetNo(int no)

 {

 number = no;

 }

 Public int GetNo()

 {

 return number;

 }

}

The D emoClass is only capable t o handl e i nteger numbers and i f yo u want t o

provide facility to handle other type of numbers you required to rewrite code for other

numeric types. N ow l et’s create sa me f unctionality w ith gen erics that pr ovide

parameterized t ypes and gen eric class is capable t o handl e a ny type. Y ou ca n

create parameterized type class by appending “<T>” af ter name of class. You can

use other character or name instead of “T” but compulsory enclosed between < and

>.

 126

class GenericDemoClass<T>

 {

 T number;

public void SetData(T no)

 {

number = no;

 }

public T GetData()

 {

return number;

 }

 }

In above code same logic used as DemoClass but “int” type is replaced with “T” type.

T is parameterized type and w hen make instance of generic class provide required

type. GenericDemoClass is capable to handle any types. Let’s use generic class in

following code.

static void Main(string[] args)

 {

 // pass int as parameterized type for <T>

 GenericDemoClass<int> obj1 = new GenericDemoClass<int>();

obj1.SetData(100);

Console.WriteLine("The number is " + obj1.GetData());

Console.WriteLine("The t ype of dat a st ored i n G enericDemoClass object i s " +

obj1.GetData().GetType());

 // pass float as parameterized type for <T>

GenericDemoClass<float> obj2 = new GenericDemoClass<float>();

obj2.SetData(98.1067f);

 127

Console.WriteLine("The number is " + obj2.GetData());

Console.WriteLine("The t ype of dat a st ored i n G enericDemoClass object i s " +

obj2.GetData().GetType());

 //Use user define type Matrix

 //pass Matrix as parameterized type for <T>

 GenericDemoClass<Matrix> obj3 = new GenericDemoClass<Matrix>();

obj3.SetData(new Matrix(1,1,1,1));

Console.WriteLine("Matrix =");

obj3.GetData().GetMatrix();

Console.WriteLine("The t ype of dat a st ored i n GenericDemoClass object i s " +

obj3.GetData().GetType());

Console.ReadLine();

 }

Look in a bove co de GenericDemoClass is ca pable t o hand le i nt, f loat an d M atrix

types and produce following output.

OUTPUT:

The number is 100

The type of data stored in GenericDemoClass object is System.Int32

The number is 98.1067

The type of data stored in GenericDemoClass object is System.Single

Matrix =

1 1

1 1

The type of data stored in GenericDemoClass object is BAOU_B3_U3_Operator_Overloading.Matrix

.Net framework provides number of generic collections. To use generic collections in

C# i nclude nam espace S ystem.Collection.Generics. Li st i s an example of gener ic

collection.

 128

using System;

using System.Collections.Generic;

namespace BAOU_B3_U3_Generics_List

{

class Program

 {

static void Main(string[] args)

 {

 List<int> ls = new List<int>();

 //Add items in list

ls.Add(1);

ls.Add(2);

ls.Add(3);

 //Display items from list

Console.WriteLine("Items in list");

foreach(int no in ls)

 {

Console.WriteLine(no);

 }

Console.ReadLine();

}

 }

}

 129

OUTPUT

Items in list

1

2

3

Check your Progress 2

1. Generic class can be capable to handle any type.

A. True

B. False

2. <T> is used to pass _____________________.

A. Data

B. Parameter

C. Parameterized Type

D. None of these

3. Select valid statement for declaration of generic class.

A. public class DemoClass {------}

B. public class DemoClass(T) {------}

C. public class DemoClass<type> {------}

D. None of these

4.5LET US SUM UP

In this unit you learn about operator overloading and generics.

Polymorphism can be achieved by using method overloading, operator overloading

and m ethod ove rriding. O perator ove rloading i s use d t o gi ve d ifferent m eaning t o

standard C# operators for user defined class or structure.

 130

In C # o perators are classi fy as unary, b inary or ternary operator. All st andard

operators are not support operator overloading but some supports like +, -, !, ~, ++,--

, +, -, * , / , %, &, | , ^ , <<, >>, Relational operators (==, !=, <, >, <=, >=), true, fa lse

must be o verloaded i n pai rs. For Example (== and ! =). R est of t he C # oper ators

cannot overload.

Operator overloading can be performed by using “operator” keyword and sy ntax for

operator overloading is

public static <return type> operator <op symbol> (parameters list){ ----}

.Net framework 2.0 introduce gener ics that provide type safety and facility to reuse

common logic for different data type. To works with generics first we need to create

generic class by using parameterized type and when make instance of generic class

pass the required data type.

Declaration of generic class is like

public class GenericDemoClass <T> { ----- }

To make instance of generic class is

GenericDemoClass<int> obj = new GenericDemoClass<int>();

.Net f ramework provide ge neric collection l ike L ist<>, S tack<>, Q ueue<>,

Dictionary<> etc. To use generic collection include following namespace.

using System.Collections.Generic;

4.6CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

Answer – 1: B

+ Operator is binary operator and used like C = A+B

Answer – 2: A

“operator” is keyword used to overload operator in C#.

 131

Answer – 3: C

“-“ Operator is used return type as class or structure in which “-“ operator declared.

Check your Progress 2

Answer – 1: A

Generic class is capable to works with any type which is passed as parameterized

type

Answer – 2: C

Parameterized Type

Answer – 3: C

public class DemoClass<type> {------} is valid statement

4.7 FURTHER READING

• Herbert Schildt, C# 4.0: The Complete Reference, Mc Graw Hill publication

• Overloadable operators (C# Programming Guide)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-

guide/statements-expressions-operators/overloadable-operators

4.8ASSIGNMENTS

1. State and classify all operators in C#

2. C reate generic interface f or Shape i nterface. Define A rea a nd Volume methods

that capable to calculate area and volume with any numeric type for shape.

4.9ACTIVITIES

• Activity-1

Perform operator overloading for ++ and - - operators.

• Activity-2

Perform push and pop operation on generic Stack<> collection.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators�
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators�

 132

 Block-4

Threading, File handling, C#

controls

 133

Unit 1: Multithreading

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Getting started with threads

1.4. Managing thread lifetimes

1.5. Destroying Threads

1.6. Scheduling Threads

1.7. Communicating data to a Thread

1.8. Let us sum up

1.9. Check your Progress: Possible Answers

1.10. Further Reading

1.11. Assignment

1.12. Activities

1

 134

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Create threads

• Manage threads

• Understand thread life cycle

• Communicating data to a Thread

1.2 INTRODUCTION

Each application runs with at least one t hread. Thread is like path of executing the

application. There are two types of application. One is single thread application and

second is multithreading application.

Single t hread application i s only create one t hread. E xample of sin gle t hread

application is embedded system.

Multithreading application can create and control more than one thread. It starts with

main thread and later on main thread creates other threads as per requirements.

This unit i n det ails describes you w orking w ith t hreads with C # pr ogramming

language. You will learn how to create and manage thread using C#.

1.3 GETTING STARTED WITH THREADS

Operating system executes multiple applications simultaneously by creating process

for each application. I n t his way operating syst em pr ovides multitasking and

allocates processing t ime t o each pr ocess. E ach appl ication at l east cr eates one

thread and t he t hread i s called P rimary Thread (Main Thr ead). A pplication m ay

create m any other t hreads for co ncurrent w ork. Th ese t hreads are ca lled w orker

threads (Other Threads).

Thread is defines execution path of application. By using multithreading application,

application can def ine multiple execution paths. Multithread application works more

efficiently and exe cutes multiple par t o f ap plication at sa me t ime as per a llocated

time slot.

 135

The main advantages of multithreading are increase responsiveness of application

and take advantages of multi core processor.For example, your application performs

more than one oper ation and that can be done in parallel.The total execution t ime

can be decreased by performing those operations in separate threads and running

the application on a m ulticore processor. Multithreading might increase performance

and responsiveness of the application.

C# has inbuilt support m ultithreading. C# p rovides robust f acility for m ultithreading

and e liminated pr oblems associated w ith m ultithreading i n older pr ogramming

languages.

Microsoft has continually enhancing t he functionality of .n et fra mework. It i nclude

new f eatures in par allel pr ogramming and m ultithreading like TPL (Task P arallel

Library) and P LINQ (Parallel Language Integrated Query). TPL and P LINQ support

multicore processors.

C# pr ovides multithreading r elated f unctionality via S ystem.Threading namespace.

The S ystem.Threading nam espace co ntains classes and i nterfaces to pr ovides

facility for multithreading. The i mportant c lass of t he nam espace i s Thread an d

following are important properties the class

Property Description

IsAlive

Returns true or false.

If a thread has been started and not terminated normally or aborted

then return true else return false

IsBackground

Returns true or false.

If a thread is a background thread then return true else return false.

Background threads don’t prevent a process to stop by CLR while

foreground threads prevent stopping.

Name
Gets or sets the name of a thread. Name property is very useful in

debugging

Priority
Gets or sets a thread priority value that is used by the operating

system to prioritize thread scheduling. You can set priority by using

ThreadPriority enumerator. Possible values are AboveNormal,

 136

Normal, BelowNormal, Lowest and Highest.

ThreadState

Gets a ThreadState value that containing the current states of the

thread. The list of ThreadState are Aborted, AbortRequested,

Background, Running, Stopped, StopRequested, Suspended,

SuspendedRequested, Unstarted, WaitSleepJoin

Table-1 Thread class property

Following example demonstrate how to works with current thread of the application

and print values of above properties.

using System;

using System.Threading;

namespace MultiThreadingDemo

{

class Program

 {

static void Main(string[] args)

 {

 //Create object of thread and assign current thread to it

 Thread obj = Thread.CurrentThread;

 obj.Name = "Current Thread";

Console.WriteLine("Name of Thread is " + obj.Name);

Console.WriteLine("Current state of Thread is " + obj.ThreadState);

Console.WriteLine("Priority of the Thread is " + obj.Priority);

Console.WriteLine("The Thread is alive ==> " + obj.IsAlive);

Console.WriteLine("The Thr ead i s background t hread. = => " +

obj.IsBackground);

Console.ReadLine();

 }

 137

 }

}

OUTPUT:

Name of Thread is Current Thread

Current state of Thread is Running

Priority of the Thread is Normal

The Thread is alive ==>True

The Thread is background thread. ==>False

There are several ways to create thread and start the tread. One of the ways is use

ThreadStart delegate. ThreadStart delegate i s defined by .net framework. To learn

how two threads work and execute part of the application, let’s create two methods

in DemoClass.

One m ethod pr int p ositive n umbers between 1 to 20 a nd s econd m ethod pr ints

negative numbers between -1 to -20.

public class DemoClass

 {

public void PrintPositiveNos()

 {

for (int i = 1; i <= 20; i++)

Console.WriteLine("Positive No -" + i);

 }

public void PrintNegativeNos()

 {

for (int i = -1; i >= -20; i--)

Console.WriteLine("Negative No -" + i);

 138

 }

 }

Now create two thread us ing ThreadStart delegate in Main method and start using

Start() method of thread class.

using System;

using System.Threading;

namespace MultiThreadingDemo

{

class Program

 {

static void Main(string[] args)

 {

DemoClass objDemo = new DemoClass();

//Create new thread for printing positive nos.

 //Thread class constructor argument type is ThreadStart delegate

 Thread ThreadPositiveNos = new Thread(objDemo.PrintPositiveNos);

 //Start thread

ThreadPositiveNos.Start();

//Create new thread for printing negative nos.

 Thread ThreadNegativeNos = new Thread(objDemo.PrintNegativeNos);

 //Start thread

ThreadNegativeNos.Start();

Console.ReadLine();

 }

 }

 139

}

OUTPUT:

Positive No -1

Positive No -2

Positive No -3

Positive No -4

Positive No -5

Positive No -6

Positive No -7

Positive No -8

Positive No -9

Positive No -10

Positive No -11

Positive No -12

Positive No -13

Positive No -14

Negative No --1

Negative No --2

Negative No --3

Negative No --4

Negative No --5

Negative No --6

Negative No --7

Negative No --8

Negative No --9

Negative No --10

 140

Positive No -15

Positive No -16

Positive No -17

Positive No -18

Positive No -19

Positive No -20

Negative No --11

Negative No --12

Negative No --13

Negative No --14

Negative No --15

Negative No --16

Negative No --17

Negative No --18

Negative No --19

Negative No –20

Look the output of ab ove co de. Both t he methods concurrently execute a nd pr int

positive or negative number as per time slot allot to each thread. Same way you can

create m ultiple t hreads for appl ication for co mplex o peration and o ptimize

performance of the application by multithreading programming.

Check your Progress1

1. What is the default priority of Thread.CurrentThread?

D. AboveNormal

E. BelowNormal

F. Normal

G. Highest

 141

2. Select the namespace that support multithreading in .net framework.

E. System

F. System.Threading

G. System.Threading.Tasks

H. System.Linq

1.4 MANAGING THREAD LIFETIMES

The thread lifetime can be understood by using thread life cycle. You can calculate a

time span from starting of the thread to ending of the thread. The lifetime of thread is

started when instance of Thread class created and ended when execution of thread

is completed or terminated.

The t hread i s passed i n s everal st ates during its lifetime. Fol lowing is the list o f

thread states.

• Unstarted

• Running

• SuspendRequested

• Suspended

• WaitSleepJoin

• StopRequested (Internal Use Only)

• Stopped

• Background

• AbortRequested

• Aborted

When i nstance of Thr ead cr eated and S tart() i s not ca lled at t hat t ime t hread

instance has Unstarted thread state assigned.

When instance of Thread is started and not yet stop at that time thread instance has

Running thread state assigned.

When instance of Thread is being requested to suspend at that time thread instance

has SuspendRequested thread state assigned.

 142

When i nstance of T hread has been su spend at t hat t ime t hread i nstance ha s

Suspended thread state assigned.

When instance of Thread has been blocked by Wait(), Jo in() or S leep() method at

that time thread instance has WaitSleepJoin thread state assigned.

When instance of Thread has been requested t o stop at t hat time thread instance

has StopRequested thread state assigned. This state is used by .net for internal use

only.

When i nstance of T hread i s stopped at that t ime t hread i nstance has Stopped
thread state assigned.

When instance of Thread is execute in background at that time thread instance has

Backgroundthread state assi gned. Y ou ca n ch ange f oreground t hread i nto

background thread by assigning “true” value to IsBackgroundproperty of the thread

instance.

When instance of Thread is being requested to abort by calling Abort() method and

not ye t abor ted at t hat t ime t hread i nstance has AbortRequested thread st ate

assigned.

When instance of Thread is aborted and the state is not yet changed to Stop at that

time thread instance has Aborted thread state assigned.

Thread instance can be manage by using several method provided by Thread class

in . Net f ramework. F ollowing t able descr ibe f ew M ethods of Thr ead clas s. R efer

MSDN for all methods.

Method Description

Start()

Change the current instance of thread into running state. Thread

instance start execution. It has one overloaded method Start(Object).

Start(Object) is used to pass data to thread.

Sleep(Int32)
Suspend the current thread for given time period in milliseconds. It has

one overloaded method Sleep(TimeSpan).

Join()
The instance of thread is waiting till thread terminate. Block the calling

thread. It has two overloaded method Join(Int32), Join(TimeSpan).

 143

Abort() Abort() method terminate the thread.

Interrupt() Interrupt the thread that is in WaitSleepJoin state.

Table-2 Methods of Thread class

Check your Progress 2

1. Which method change thread state into running state?

A. Join()

B. Abort()

C. Sleep()

D. Start()

2. Sleep() method is permanently block thread.

A. True

B. False

1.5 DESTROYING THREADS

Thread instance i s automatically stop execution when assigned method returns. I n

some situation you need to destroy running thread manually. You can destroy thread

instance by calling Abort() method.

Following Example s hows you how t o start and de stroy thread. The c ode us e

DemoClass for printing positive and negative numbers simultaneously.

static void Main(string[] args)

 {

 DemoClass objDemo = new DemoClass();

//Create new thread for printing positive nos.

 //Thread class constructor argument type is ThreadStart delegate

 Thread ThreadPositiveNos = new Thread(objDemo.PrintPositiveNos);

 //Start thread

ThreadPositiveNos.Start();

 144

//Create new thread for printing negative nos.

 Thread ThreadNegativeNos = new Thread(objDemo.PrintNegativeNos);

 //Start thread

ThreadNegativeNos.Start();

Console.WriteLine("ThreadNegativeNos thread started");

Thread.Sleep(10);

ThreadNegativeNos.Abort();

Console.WriteLine("ThreadNegativeNos thread aborted");

Console.ReadLine();

 }

Output:

Positive No >>1

Positive No >>2

ThreadNegativeNos thread started

Positive No >>3

Negative No >>-1

Negative No >>-2

Negative No >>-3

Negative No >>-4

Negative No >>-5

Negative No >>-6

Negative No >>-7

Positive No >>4

Positive No >>5

Positive No >>6

 145

Positive No >>7

Positive No >>8

Positive No >>9

Positive No >>10

Positive No >>11

Positive No >>12

Positive No >>13

Positive No >>14

Positive No >>15

Positive No >>16

Positive No >>17

Positive No >>18

Positive No >>19

Positive No >>20

Negative No >>-8

Negative No >>-9

Negative No >>-10

Negative No >>-11

Negative No >>-12

Negative No >>-13

Negative No >>-14

Negative No >>-15

ThreadNegativeNos thread aborted

In above ex ample f irst “ ThreadPositiveNos” st arted and st art pr inting posit ive

numbers. Than “ ThreadNegativeNos” starts and start printing negative numbers. In

main method 10 milliseconds delay applied after “ThreadNegativeNos” starts so few

 146

negative numbers print but not all from -1 to -20 because by calling Abort() method

called after 10 milliseconds and it terminate “ThreadNegativeNos”.

.

Check your Progress 3

1. _______________ m ethod su spend t he current t hread f or t he sp ecific

milliseconds.

A. Abort

B. Start

C. Sleep

D. none of the all

1.6SCHEDULING THREADS

Operating system assi gn s lice of t ime t o execute ea ch t hread based on priority of

thread. I n . net t hreads are r un under co ntrol of C LR per haps operating system

assign e xecution t ime t o each t hread. E ach operating syst em use di fferent

scheduling al gorithm. I n C LR each t hread st arts w ith nor mal pr iority. D uring t he

execution you ca n c hange t hread pr iority by changing T hread.Priority property.

Available options for thread priority are AboveNormal, Normal, BelowNormal, Lowest

and Highest.

Operating syst em ca n assi gn f irst pr iority t o t hread w ith “ Highest” pr iority. Than

“AboveNormal”, “ Normal”, “ BelowNormal” and “ Lowest” se quentially. I f m ultiple

thread have sa me pr iority than oper ating syst em s cheduler cycles through t he

threads at that priority.

Now change priority of “ThreadNegativeNos” with highest and run the example of 1.5

point again and check output.

static void Main(string[] args)

 {

 DemoClass objDemo = new DemoClass();

 147

//Create new thread for printing positive nos.

 //Thread class constructor argument type is ThreadStart delegate

 Thread ThreadPositiveNos = new Thread(objDemo.PrintPositiveNos);

 //Start thread

ThreadPositiveNos.Start();

//Create new thread for printing negative nos.

 Thread ThreadNegativeNos = new Thread(objDemo.PrintNegativeNos);

 //Start thread

ThreadNegativeNos.Start();

Console.WriteLine("ThreadNegativeNos thread started");

ThreadNegativeNos.Priority = ThreadPriority.Highest;

 //ThreadNegativeNos.Abort();

 //Console.WriteLine("ThreadNegativeNos thread aborted");

Console.ReadLine();

}

Output:

ThreadNegativeNos thread started

Positive No >>1

Negative No >>-1

Negative No >>-2

Negative No >>-3

Negative No >>-4

Negative No >>-5

Negative No >>-6

Negative No >>-7

Positive No >>2

 148

Positive No >>3

Positive No >>4

Negative No >>-8

Negative No >>-9

Negative No >>-10

Negative No >>-11

Negative No >>-12

Negative No >>-13

Negative No >>-14

Negative No >>-15

Negative No >>-16

Negative No >>-17

Negative No >>-18

Negative No >>-19

Negative No >>-20

Positive No >>5

Positive No >>6

Positive No >>7

Positive No >>8

Positive No >>9

Positive No >>10

Positive No >>11

Positive No >>12

Positive No >>13

Positive No >>14

Positive No >>15

 149

Positive No >>16

Positive No >>17

Positive No >>18

Positive No >>19

Positive No >>20

In above ex ample f irst ThreadPositiveNos starts w ith n ormal priority, a fter th at

ThreadNegativeNos starts with n ormal p riority but ThreadPositiveNos priority

changes to highest so it complete its task before ThreadPositiveNos and print -1 to

-20 numbers before positive numbers.

Check your Progress 4

1. _______________ is not a thread priority value.

A. Normal

B. Highest

C. Average

D. Lowest

1.7COMMUNICATING DATA TO A THREAD

Sometime threads need to communicate with other threads or depends on task of

other threads to complete to perform its own task in multithreading programming. For

example thread T1 i s running inside lock block and wait for resource R1 but at this

time R1 is not ava ilable. T1 i s blocking other threads access it t ill resource R1 not

available. Thi s situation i mpact per formance of appl ication bec ause w e a re not

taking f ull advantages of m ultithreading. The so lution i s T1 t emporary release t he

lock and allow other thread to run. When R1 is available T1 can notified and resume

the execution. This is achieved through by inter thread communication.

C# supports inter thread communication with Wait(), Pulse() and PulseAll() methods.

This all methods are part of Monitor class.

The Wait() method waits till other thread to complete. It has two forms.

 150

1. Wait(object obj)

2. Wait(object obj, int timeout)

Timeout i s i n m illiseconds and t hread wait t ill other thread complete or t ill t imeout.

Wait method is static and return type is bool.

Pulse and PulseAll method notify any waiting thread

1. Pulse(object obj)

2. PulseAll(object obj)

These two methods are static and return type is void.

Let understand use of these methods by changing over example of printing positive

number and negative number in such a way that program print one pos itive number

and one negative number in sequence.

public class DemoClass

 {

 //object used to apply lock

object locknos = new object();

public void PrintPositiveNos()

 {

for (int i = 1; i <= 5; i++)

 {

lock(locknos)

 {

Console.WriteLine("Positive No >>" + i);

Monitor.Pulse(locknos);// Notify any waiting thread

Monitor.Wait(locknos); //Wait for other thread to complete

 }

 }

 }

 151

public void PrintNegativeNos()

 {

for (int i = -1; i >= -5; i--)

 {

lock (locknos)

 {

Console.WriteLine("Negative No >>" + i);

Monitor.Pulse(locknos);

Monitor.Wait(locknos);

}

 }

 }

 }

Code for main program

static void Main(string[] args)

 {

 DemoClass objDemo = new DemoClass();

//Create new thread for printing positive nos.

 //Thread class constructor argument type is ThreadStart delegate

 Thread ThreadPositiveNos = new Thread(objDemo.PrintPositiveNos);

 //Start thread

ThreadPositiveNos.Start();

//Create new thread for printing negative nos.

 Thread ThreadNegativeNos = new Thread(objDemo.PrintNegativeNos);

 //Start thread

ThreadNegativeNos.Start();

 152

Console.ReadLine();

 }

OUTPUT:

Positive No >>1

Negative No >>-1

Positive No >>2

Negative No >>-2

Positive No >>3

Negative No >>-3

Positive No >>4

Negative No >>-4

Positive No >>5

Negative No >>-5

Look the output of this example and compare with other previous examples where

sequence i s maintain base o n a llocated t ime slot t o threads. I n t his example b oth

threads are communicate with each other and notify each other task is completed or

not. If you run above example than notice that at last iteration both threads fall in wait

state so program is not automatically stop. To overcome this problem use timeout in

wait method with 100 milliseconds.

Monitor.Wait(locknos, 100); //Wait for other thread to complete or 100 milliseconds

Check your Progress 5

1. Which method provides notification to other thread?

A. Pulse

B. Wait

C. Sleep

D. Join

 153

1.8 LET US SUM UP

This unit describe about multitasking and threading. By using threading application

can cr eate m ultiple e xecution p ath and e xecute t hem acco rding t o pr iority of each

thread.

The hear t of m ultithreading i n C# i s Thread class which i s used t o cr eate and

manage threads in application. It has bunch of properties and methods to ach ieve

functionality of m ultitasking. Fe w i mportant pr operties are P riority, I sAlive, N ame,

ThreadState etc.

The Thread class has a methods like Start, Join, Wait, Sleep, Abort etc.

Thread can be sch eduled by assigning appropriate priority. You can se t priority by

using Thr eadPriority enum erator. P ossible va lues ar e A boveNormal, N ormal,

BelowNormal, Lowest and Highest.

Thread ca n be co mmunicate w ith ot her t hreads by using f unctionality of M onitor

class. The class provides signalling m ethods Pulse and P ulseAll t hat not ify other

threads.

1.9CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1
Answer – 1: C

The default priority for current thread is Normal

Answer – 2: B

System.Threading namespace supports multithreading.

Check your Progress 2
Answer – 1: D

Start() method change thread state into running state.

Answer – 2: B

False – Sleep method suspend the current thread for given time period in

milliseconds.

 154

Check your Progress 3
Answer – 1: C

Sleep method suspend the current thread for given time period in milliseconds.

Check your Progress 4
Answer – 1: C

Average is not a thread priority value.

Check your Progress 5
Answer – 1: A

Pulse method of monitor class notify other threads. It works with lock block

1.10 FURTHER READING

• Chapter-23 Multithreaded Programming,Part One

Herbert S childt, C # 4. 0: Th e C omplete R eference, The M cGraw-Hill

Companies

• Threading (Managed Threading)

https://docs.microsoft.com/en-us/dotnet/standard/threading/

1.11ASSIGNMENTS

• Implement m ultithreading t o pr int odd and eve n nu mbers by two se parate

thread. A lso co mmunicate w ith t his two t hread and pr int se ries of num bers

1,2,3,4,5,6,7,8,9,10.

1.12ACTIVITIES

• Activity-1
Make l ist of c lasses available in System.threading Namespace and study its

properties and methods.

• Activity-2
Try to use W ait an d Pulse m ethod of m onitor class w ithout l ock block a nd

note what type of output or error you got and why.

 155

Unit 2: File I/O With Streams

Unit Structure

2.11 Learning Objectives

2.12 Introduction

2.13 Stream Classes – FileStream,StreamReader, StreamWriter

2.14 Directory and DirectoryInfo

2.15 File and FileInfo

2.16 Parsing Paths

2.17 Let us sum up

2.18 Check your Progress:Possible Answers

2.19 Further Reading

2.20 Assignment

2.21 Activities

2

 156

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Create new files on file system

• Read from files

• Write on the files

• Manage directories on file system

2.2 INTRODUCTION

There ar e basically two w ays to st ore dat a by software. O ne i s on d atabase an d

second i s on f ile syst em. The . net f ramework provides vast num ber of classe s to

perform read write operation on database by using ADO.NET. For file read and write

operation on f ile syst em . net f ramework provides bunch of classe s in S ystem.IO

namespace. On file system we are perform operation related to managing directories

and files.

Read and write operations are performed by using st ream. S tream is sequence of

characters or byt es used t o s plit l arge f ile i nto c hunk of byt es. . Net f ramework

provides classes like FileStream, StreamReader and S treamWriter to per form read

and write operation.

Files are stored inside of directory or on hierarchical path of directories. To manage

directories, f iles and path . net f ramework provides Directory and di rectoryInfo, Fi le

and FileInfo classes.

2.3 STREAM CLASSES – FILESTREAM, STREAMREADER,
STREAMWRITER

Stream is sequence of bytes or characters are accessed in sequence one at a time.

.net f ramework provide base cl ass Stream and m any other der ived clas ses from

Stream class. Stream class is abstract class so you cannot make instance of Stream

class. S tream class provides methods and pr operties to per form r ead and w rite

operation on stream of bytes.

 157

2.3.1 FileStream

FileStream class is available in S ystem.IO nam espace and t he class provides

stream for file read and write operations. The FileStream class is used to read from

and write to bi nary data on t he f ile. Fi leStream class has several n umber of

constructors are there for di fferent functionality. Fol lowing table provide information

of constructors.

FileStream(IntPtr, FileAccess) Initializes a ne w i nstance of

the FileStream class for t he sp ecified

file handle, with the specified read/write

permission.

FileStream(IntPtr, FileAccess, Boolean) Initializes a ne w i nstance of

the FileStream class for t he sp ecified

file handle, with the specified read/write

permission and FileStream instance

ownership.

FileStream(IntPtr, FileAccess, Boolean,

Int32)

Initializes a ne w i nstance of

the FileStream class for t he sp ecified

file handle, with the specified read/write

permission, FileStream instance

ownership, and buffer size.

FileStream(IntPtr, FileAccess, Boolean,

Int32, Boolean)

Initializes a ne w i nstance of

the FileStream class for t he sp ecified

file handle, with the specified read/write

permission, FileStream instance

ownership, buf fer size , an d

synchronous or asynchronous state.

FileStream(SafeFileHandle, FileAccess) Initializes a ne w i nstance of

the FileStream class for t he sp ecified

file handle, with the specified read/write

permission.

FileStream(SafeFileHandle, FileAccess,

Int32)

Initializes a ne w i nstance of

the FileStream class for t he specified

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_IntPtr_System_IO_FileAccess_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_IntPtr_System_IO_FileAccess_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_IntPtr_System_IO_FileAccess_System_Boolean_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_IntPtr_System_IO_FileAccess_System_Boolean_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_IntPtr_System_IO_FileAccess_System_Boolean_System_Int32_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_IntPtr_System_IO_FileAccess_System_Boolean_System_Int32_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_Microsoft_Win32_SafeHandles_SafeFileHandle_System_IO_FileAccess_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_Microsoft_Win32_SafeHandles_SafeFileHandle_System_IO_FileAccess_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_Microsoft_Win32_SafeHandles_SafeFileHandle_System_IO_FileAccess_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�

 158

file handle, with the specified read/write

permission, and buffer size.

FileStream(SafeFileHandle, FileAccess,

Int32, Boolean)

Initializes a ne w i nstance of

the FileStream class for t he sp ecified

file handle, with the specified read/write

permission, buf fer size , and

synchronous or asynchronous state.

FileStream(String, FileMode) Initializes a ne w i nstance of

the FileStream class with t he s pecified

path and creation mode.

FileStream(String, FileMode,

FileAccess)

Initializes a ne w i nstance of

the FileStream class with t he s pecified

path, cr eation m ode, and r ead/write

permission.

FileStream(String, FileMode,

FileAccess, FileShare)

Initializes a ne w i nstance of

the FileStream class with t he s pecified

path, cr eation mode, r ead/write

permission, and sharing permission.

FileStream(String, FileMode,

FileAccess, FileShare, Int32)

Initializes a ne w i nstance of

the FileStream class with t he s pecified

path, cr eation m ode, r ead/write and

sharing permission, and buffer size.

FileStream(String, FileMode,

FileAccess, FileShare, Int32, Boolean)

Initializes a ne w i nstance of

the FileStream class with t he s pecified

path, cr eation m ode, r ead/write and

sharing permission, buf fer si ze, and

synchronous or asynchronous state.

FileStream(String, FileMode,

FileAccess, FileShare, Int32,

FileOptions)

Initializes a ne w i nstance of

the FileStream class with t he s pecified

path, cr eation m ode, r ead/write and

sharing permission, t he acce ss ot her

FileStreams can have t o t he sa me f ile,

the buf fer size , an d addi tional f ile

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_Microsoft_Win32_SafeHandles_SafeFileHandle_System_IO_FileAccess_System_Int32_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_Microsoft_Win32_SafeHandles_SafeFileHandle_System_IO_FileAccess_System_Int32_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_System_Int32_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_System_Int32_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_System_Int32_System_IO_FileOptions_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_System_Int32_System_IO_FileOptions_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_System_Int32_System_IO_FileOptions_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�

 159

options.

FileStream(String, FileMode,

FileSystemRights, FileShare, Int32,

FileOptions)

Initializes a ne w i nstance of

the FileStream class with t he s pecified

path, cr eation m ode, acce ss rights and

sharing permission, the buffer size, and

additional file options.

FileStream(String, FileMode,

FileSystemRights, FileShare, Int32,

FileOptions, FileSecurity)

Initializes a ne w i nstance of

the FileStream class with t he s pecified

path, cr eation m ode, acce ss rights and

sharing permission, t he buf fer size ,

additional file opt ions, acce ss control

and audit security.
Table 2.1List of FileStream Constructor(Source : https://docs.microsoft.com)

FileStream class provide following list of properties.

CanRead Gets a value that indicates whether the current stream supports

reading.

CanSeek Gets a value that indicates whether the current stream supports

seeking.

CanTimeout Gets a va lue t hat det ermines whether t he cu rrent s tream ca n

time out.

(Inherited from Stream)

CanWrite Gets a value that indicates whether the current stream supports

writing.

Handle Gets the oper ating system f ile hand le for t he f ile t hat t he

current FileStream object encapsulates.

IsAsync Gets a va lue that indicates whether the FileStream was opened

asynchronously or synchronously.

Length Gets the length in bytes of the stream.

Name Gets the absolute path of the file opened in the FileStream.

Position Gets or sets the current position of this stream.

ReadTimeout Gets or se ts a va lue, i n m illiseconds, t hat determines how long

the stream will attempt to read before timing out.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_Security_AccessControl_FileSystemRights_System_IO_FileShare_System_Int32_System_IO_FileOptions_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_Security_AccessControl_FileSystemRights_System_IO_FileShare_System_Int32_System_IO_FileOptions_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_Security_AccessControl_FileSystemRights_System_IO_FileShare_System_Int32_System_IO_FileOptions_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_Security_AccessControl_FileSystemRights_System_IO_FileShare_System_Int32_System_IO_FileOptions_System_Security_AccessControl_FileSecurity_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_Security_AccessControl_FileSystemRights_System_IO_FileShare_System_Int32_System_IO_FileOptions_System_Security_AccessControl_FileSecurity_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.-ctor?view=netframework-4.6.2#System_IO_FileStream__ctor_System_String_System_IO_FileMode_System_Security_AccessControl_FileSystemRights_System_IO_FileShare_System_Int32_System_IO_FileOptions_System_Security_AccessControl_FileSecurity_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.canread?view=netframework-4.6.2#System_IO_FileStream_CanRead�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.canseek?view=netframework-4.6.2#System_IO_FileStream_CanSeek�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.cantimeout?view=netframework-4.6.2#System_IO_Stream_CanTimeout�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.canwrite?view=netframework-4.6.2#System_IO_FileStream_CanWrite�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.handle?view=netframework-4.6.2#System_IO_FileStream_Handle�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.isasync?view=netframework-4.6.2#System_IO_FileStream_IsAsync�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.length?view=netframework-4.6.2#System_IO_FileStream_Length�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.name?view=netframework-4.6.2#System_IO_FileStream_Name�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.position?view=netframework-4.6.2#System_IO_FileStream_Position�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.readtimeout?view=netframework-4.6.2#System_IO_Stream_ReadTimeout�

 160

(Inherited from Stream)

SafeFileHandle Gets a SafeFileHandle object t hat r epresents the oper ating

system f ile hand le f or t he f ile t hat t he cu rrent FileStream object

encapsulates.

WriteTimeout Gets or se ts a va lue, i n m illiseconds, t hat determines how long

the stream will attempt to write before timing out.

(Inherited from Stream)
Table 2.2 Properties of FileStream Class(Source : https://docs.microsoft.com)

The FileStream class provides following methods for read and write operation on file.

BeginRead(Byte[], I nt32, I nt32,

AsyncCallback, Object)

Begins an asynchronous read operation

BeginWrite(Byte[], I nt32, I nt32,

AsyncCallback, Object)

Begins an asyn chronous w rite

operation.

EndRead(IAsyncResult) Waits for t he pen ding asy nchronous

read oper ation t o co mplete. (Consider

using ReadAsync(Byte[], In t32, I nt32,

CancellationToken) instead.)

EndWrite(IAsyncResult) Ends an a synchronous write operation

and bl ocks until t he I /O oper ation i s

complete. (Consider

using WriteAsync(Byte[], In t32, In t32,

CancellationToken) instead.)

Flush() Clears buffers f or this stream and

causes any buffered data t o be w ritten

to the file.

Flush(Boolean) Clears buffers f or this stream and

causes any buffered data t o be w ritten

to t he f ile, and also cl ears all

intermediate file buffers.

Lock(Int64, Int64) Prevents other pr ocesses from r eading

https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.safefilehandle?view=netframework-4.6.2#System_IO_FileStream_SafeFileHandle�
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.safehandles.safefilehandle?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.writetimeout?view=netframework-4.6.2#System_IO_Stream_WriteTimeout�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.endread?view=netframework-4.6.2#System_IO_FileStream_EndRead_System_IAsyncResult_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.readasync?view=netframework-4.6.2#System_IO_FileStream_ReadAsync_System_Byte___System_Int32_System_Int32_System_Threading_CancellationToken_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.readasync?view=netframework-4.6.2#System_IO_FileStream_ReadAsync_System_Byte___System_Int32_System_Int32_System_Threading_CancellationToken_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.endwrite?view=netframework-4.6.2#System_IO_FileStream_EndWrite_System_IAsyncResult_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.writeasync?view=netframework-4.6.2#System_IO_FileStream_WriteAsync_System_Byte___System_Int32_System_Int32_System_Threading_CancellationToken_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.writeasync?view=netframework-4.6.2#System_IO_FileStream_WriteAsync_System_Byte___System_Int32_System_Int32_System_Threading_CancellationToken_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.writeasync?view=netframework-4.6.2#System_IO_FileStream_WriteAsync_System_Byte___System_Int32_System_Int32_System_Threading_CancellationToken_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.flush?view=netframework-4.6.2#System_IO_FileStream_Flush�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.flush?view=netframework-4.6.2#System_IO_FileStream_Flush_System_Boolean_�

 161

from or writing to the FileStream.

Read(Byte[], Int32, Int32) Reads a block of bytes from the stream

and writes the data in a given buffer.

ReadAsync(Byte[], Int32, Int32) Asynchronously reads a s equence of

bytes from th e cu rrent s tream a nd

advances the position within the stream

by the number of bytes read.

(Inherited from Stream)

ReadByte() Reads a byt e f rom t he f ile an d

advances the read position one byte.

Seek(Int64, SeekOrigin) Sets the cu rrent posit ion of t his stream

to the given value.

SetLength(Int64) Sets the l ength of t his stream t o t he

given value.

Unlock(Int64, Int64) Allows access by other processes to all

or par t of a f ile t hat w as previously

locked.

Write(Byte[], Int32, Int32) Writes a bl ock of bytes to t he f ile

stream.

WriteAsync(Byte[], Int32, Int32) Asynchronously writes a se quence of

bytes to t he cu rrent st ream and

advances the current position within this

stream by the number of bytes written.

(Inherited from Stream)

WriteAsync(Byte[], In t32, In t32,

CancellationToken)

Asynchronously writes a se quence of

bytes to t he cu rrent stream, adva nces

the current position within this stream by

the num ber of byt es written, and

monitors cancellation requests.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.read?view=netframework-4.6.2#System_IO_FileStream_Read_System_Byte___System_Int32_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.readasync?view=netframework-4.6.2#System_IO_Stream_ReadAsync_System_Byte___System_Int32_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.readbyte?view=netframework-4.6.2#System_IO_FileStream_ReadByte�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.seek?view=netframework-4.6.2#System_IO_FileStream_Seek_System_Int64_System_IO_SeekOrigin_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.setlength?view=netframework-4.6.2#System_IO_FileStream_SetLength_System_Int64_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.unlock?view=netframework-4.6.2#System_IO_FileStream_Unlock_System_Int64_System_Int64_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.write?view=netframework-4.6.2#System_IO_FileStream_Write_System_Byte___System_Int32_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.writeasync?view=netframework-4.6.2#System_IO_Stream_WriteAsync_System_Byte___System_Int32_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.writeasync?view=netframework-4.6.2#System_IO_FileStream_WriteAsync_System_Byte___System_Int32_System_Int32_System_Threading_CancellationToken_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.writeasync?view=netframework-4.6.2#System_IO_FileStream_WriteAsync_System_Byte___System_Int32_System_Int32_System_Threading_CancellationToken_�

 162

WriteByte(Byte) Writes a byt e t o t he current posit ion i n

the file stream.

Table 2.3 Methods of FileStream Class (Source :https://docs.microsoft.com)

Lets instantiate Fi leStream class with constructor FileStream(String, Fi leMode,

FileAccess). This constructor take three arguments.

First ar gument i s string t ype and t ake f ile nam e w ith f ull p ath. For e xample

“D:\DemoFolder\Demo.txt”.

Second argument is FileMode. FileMode is enumerator and al low you to select any

one opt ion f rom ava ilable f ile modes. Fi leMode en umerator provides following

values.

FileMode.Append Open the file if exists and seek at end of

file. If file not exists create new file.

FileMode.Create Create new file. If file exists overwrite

existing file.

FileMode.CreateNew Create new file. If file exists overwrite

IOException thrown

FileMode.Open Open existing file. If file not found

FileNotFoundException thrown

FileMode.OpenOrCreate Open file if exists else create new file

FileMode.Truncate Open the file and truncate to file size

zero byte(Delete content of the file)

Table 2.4 FileMode enumerator

Third ar gument i s FileAccess. FileAccess is also enu merator us ed t o open f ile f or

read operation or write operation. FileAccess enumerator provides following values.

FileAccess.Read Assign write access to the file. Data can

be write on the file

FileAccess.Write Assign read access to the file. Data can

be read from the file

FileAccess.ReadWrite Assign read and write access to the file.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream.writebyte?view=netframework-4.6.2#System_IO_FileStream_WriteByte_System_Byte_�
https://docs.microsoft.com/�

 163

Data can be read from and write to the

file

Table 2.5 FileAccess enumerator

Following example demonstrate you to open “BeReady.txt” file and write data on the

file.

static void Main(string[] args)

 {

 FileStream f s = new Fi leStream("E:/BeReady.txt", Fi leMode.OpenOrCreate,

 FileAccess.Write);

string fileData = "Hello, This is test to write string on file Beready.txt";

 //Convert string into array of bytes

byte[] bytesData = Encoding.ASCII.GetBytes(fileData);

 //Write bytes to the file stream

fs.Write(bytesData, 0, bytesData.Length);

 //Clear buffer for the stream and write all buffered data to the file

fs.Flush();

 //Close the current stream and release any resources

fs.Close();

 }

This example create file stream with file mode open or create and with write access.

Means if BeReady.txt file exists on “E:/” drive than open it else create new. To write

on t he f ile first need t o cr eate st ring and c onvert t he st ring i nto array of byt es by

using Encoding.ASCII.GetBytes(fileData). The write() method of the FileStream class

write bytesto the file stream.

fs.Write(bytesData, 0, bytesData.Length);

Write method take three arguments bytes array, of fset – index number f rom which

start writing to the stream, length – how many bytes write to stream start from offset

to given length.

 164

fs.Flush();

Flush() method clear buffer for the stream and write all buffered data to the file.

fs.Close();

fs.Close() method close the current stream and release any resources.

Following code block shows how to read from BeReady.txt file.

static void Main(string[] args)

 {

FileStream fs = new FileStream("E:/BeReady.txt", FileMode.Open,

FileAccess.Read);

byte[] BytesData = new byte[fs.Length];

int result = fs.Read(BytesData, 0, BytesData.Length);

string str = Encoding.ASCII.GetString(BytesData);

Console.WriteLine("The information on File BeReady.txt -");

Console.WriteLine(str);

fs.Close();

Console.ReadLine();

 }

OUTPUT:

The information on File BeReady.txt –
Read Bytes = 55
Hello, This is test to write string on file Beready.txt

Above e xample cr eate f ile st ream f or r ead oper ation. Fi leStream class R ead()

method reads bytes from file stream and add to the byte array. Read method return

number of bytes read from file stream.

We need to convert bytes into string by using Encoding.ASCII.GetString(BytesData)

method.

 165

Check your Progress 1

1. ____________ is not FileMode.

E. Create

F. Open

G. Truncate

H. Write

2. ____________ method converts string into array of bytes.

E. Read()

F. Write()

G. GetBytes()

H. None of these

2.3.2 StreamReader

The StreamReader class is used to read from text file. As the use of StreamReader

class is prefix to read text file so use of StreamReader class is very easy as compare

to FileStream where you need t o open or create f ile with specific file access mode.

Also you need to use ASCII, UTF8, UTF16 etc. encoding for text file to read or write

operation by using F ileStream class. H ere i n S treamReader class only di d r ead

operation on text files with multiple options.

StreamReader class can be use d t o r ead f rom anot her st ream. This class can be

instantiated by using several constructor as per your requirement. You can directly

make instance of StreamReader class to read from text f ile or you can use FileInfo

create S treamReader i nstance. Fi leStream class help y ou to se t f ile sh are

permission while StreamReader not offer file share permission.

Following is list of few important constructors of the StreamReader class.

StreamReader(Stream) Initializes a ne w i nstance of t he StreamReader class

for the specified stream.

Initializes a ne w i nstance of t he StreamReader(Stream, StreamReader class

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_IO_Stream_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_IO_Stream_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�

 166

Boolean) for the specified stream, with the specified byte order

mark detection option.

StreamReader(Stream,

Encoding)

Initializes a ne w i nstance of t he StreamReader class

for t he sp ecified st ream, w ith t he sp ecified ch aracter

encoding.

StreamReader(String) Initializes a ne w i nstance of t he StreamReader class

for the specified file name.

StreamReader(String,

Boolean)

Initializes a ne w i nstance of t he StreamReader class

for t he sp ecified f ile nam e, w ith t he sp ecified byt e

order mark detection option.

StreamReader(String,

Encoding)

Initializes a ne w i nstance of t he StreamReader class

for the specified file name, with the specified character

encoding.

Table 2.6 StreamReader Constructor (Source: https://docs.microsoft.com)

Properties

BaseStream Returns the underlying stream.

CurrentEncoding Gets the cu rrent ch aracter enco ding t hat t he

current StreamReader object is using.

EndOfStream Gets a value that indicates whether the current stream

position is at the end of the stream.

Table 2.7 StreamReader Properties (Source: https://docs.microsoft.com)

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_IO_Stream_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_IO_Stream_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_String_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.-ctor?view=netframework-4.8#System_IO_StreamReader__ctor_System_String_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.basestream?view=netframework-4.8#System_IO_StreamReader_BaseStream�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.currentencoding?view=netframework-4.8#System_IO_StreamReader_CurrentEncoding�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.endofstream?view=netframework-4.8#System_IO_StreamReader_EndOfStream�

 167

Following is the list of few important methods of the StreamReader class.

Close() Closes the StreamReader object and t he

underlying st ream, and r eleases any system

resources associated with the reader.

DiscardBufferedData() Clears the internal buffer.

Dispose() Releases al l r esources used by

the TextReader object.

(Inherited from TextReader)

Peek() Returns the next ava ilable character but does

not consume it.

Read() Reads the nex t ch aracter f rom t he i nput

stream and advances the character position by

one character.

Read(Char[], Int32, Int32) Reads a sp ecified m aximum of characters

from th e current st ream i nto a buf fer,

beginning at the specified index.

ReadBlock(Char[], I nt32,

Int32)

Reads a sp ecified m aximum num ber of

characters from the current stream and w rites

the data to a buf fer, beginning at the specified

index.

ReadLine() Reads a l ine of ch aracters from t he cu rrent

stream and returns the data as a string.

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.close?view=netframework-4.8#System_IO_StreamReader_Close�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.discardbuffereddata?view=netframework-4.8#System_IO_StreamReader_DiscardBufferedData�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textreader.dispose?view=netframework-4.8#System_IO_TextReader_Dispose�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.peek?view=netframework-4.8#System_IO_StreamReader_Peek�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.read?view=netframework-4.8#System_IO_StreamReader_Read�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.read?view=netframework-4.8#System_IO_StreamReader_Read_System_Char___System_Int32_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.readblock?view=netframework-4.8#System_IO_StreamReader_ReadBlock_System_Char___System_Int32_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.readblock?view=netframework-4.8#System_IO_StreamReader_ReadBlock_System_Char___System_Int32_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.readline?view=netframework-4.8#System_IO_StreamReader_ReadLine�

 168

ReadToEnd() Reads all characters from the current posit ion

to the end of the stream.

Table 2.8 StreamReader Methods (Source: https://docs.microsoft.com)

Following example shows you read operation from “BeReady.txt” file. Read the code

and compare with the read operation of FileStream class yourself.

static void Main(string[] args)

 {

 StreamReader streamReader = new StreamReader(@"E:\BeReady.txt");

int i = 0;

while (!streamReader.EndOfStream)

 {

i++;

Console.WriteLine("Line No -" + i);

Console.WriteLine(streamReader.ReadLine());

 }

streamReader.Close();

Console.ReadLine();

 }

OUTPUT

Line No -1

Hello, This is test to write string on file Beready.txt by using FileStream.

Line No -2

Line No -3

This is test of reading from file Beready.txt by using StreamReader.

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader.readtoend?view=netframework-4.8#System_IO_StreamReader_ReadToEnd�
https://docs.microsoft.com/�

 169

This example perform read operation on BeReady.txt f ile. Create and f ew l ines on

this file before executing the previous code. Above code use EndOfStream property

to check read pointer at end of stream or not. If pointer is note at end of stream while

loop continue r ead l ine by line f rom B eReady.txt f ile by using S treamReader’s

ReadLine() method. This method return string. Always close the stream before move

to perform other operation in the application so other resources can use this file.

Check your Progress2

1. StreamReader is able to read character by character from text file.

A. True

B. False

2. You can make instance of StreamReader class by using ____________ .

A. DirectoryInfo

B. FileStream

C. String

D. None of the above

2.3.3 StreamWriter

StreamWriter class used to write to the text f ile or another st ream. I t works almost

same as StreamReader class to perform write operation. This class provides facility

to write text in specific encoding.

Following is list of few important constructors of the StreamWriter class.

StreamWriter(Stream) Initializes a new instance of t he StreamWriter class f or

the specified st ream by using UTF-8 encoding and the

default buffer size.

StreamWriter(Stream,

Encoding)

Initializes a new instance of t he StreamWriter class f or

the sp ecified st ream by using the sp ecified enco ding

and the default buffer size.

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_IO_Stream_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_IO_Stream_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_IO_Stream_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�

 170

StreamWriter(Stream,

Encoding, Int32)

Initializes a new instance of t he StreamWriter class f or

the sp ecified st ream by using the sp ecified enco ding

and buffer size.

StreamWriter(String) Initializes a new instance of t he StreamWriter class f or

the sp ecified f ile by using t he def ault e ncoding a nd

buffer size.

StreamWriter(String,

Boolean)

Initializes a new instance of t he StreamWriter class f or

the sp ecified f ile by using t he def ault e ncoding and

buffer size. If the file exists, it can be ei ther overwritten

or appen ded t o. I f t he f ile does no t exist , t his

constructor creates a new file.

StreamWriter(String,

Boolean, Encoding)

Initializes a new instance of t he StreamWriter class f or

the sp ecified f ile by using t he specified e ncoding an d

default buf fer size . I f t he f ile ex ists, i t ca n be ei ther

overwritten or appended to. If the file does not exist, this

constructor creates a new file.

Table 2.9 StreamWriter Constructors (Source: https://docs.microsoft.com)

Properties

AutoFlush Gets or se ts a va lue indicating whether t he StreamWriter will f lush

its buffer to the underlying stream after every call to Write(Char).

BaseStream Gets the underlying stream that interfaces with a backing store.

Encoding Gets the Encoding in which the output is written.

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_IO_Stream_System_Text_Encoding_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_IO_Stream_System_Text_Encoding_System_Int32_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_String_System_Boolean_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.-ctor?view=netframework-4.8#System_IO_StreamWriter__ctor_System_String_System_Boolean_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.autoflush?view=netframework-4.8#System_IO_StreamWriter_AutoFlush�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=netframework-4.8#System_IO_StreamWriter_Write_System_Char_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.basestream?view=netframework-4.8#System_IO_StreamWriter_BaseStream�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.encoding?view=netframework-4.8#System_IO_StreamWriter_Encoding�
https://docs.microsoft.com/en-us/dotnet/api/system.text.encoding?view=netframework-4.8�

 171

NewLine Gets or se ts the l ine t erminator string use d by t he

current TextWriter.

(Inherited from TextWriter)

Table 2.10 StreamWriter Properties (Source: https://docs.microsoft.com)

Following is list of few important methods of the StreamWriter class.

Close() Closes the cu rrent StreamWriter object and t he under lying

stream.

Dispose() Releases all resources used by the TextWriter object.

(Inherited from TextWriter)

Flush() Clears all buffers for the current writer and causes any buffered

data to be written to the underlying stream.

Write(String) Writes a string to the stream. Write method can also be used to

write text representation of any type.

WriteLine() Writes a line terminator to the text stream.

(Inherited from TextWriter)

WriteLine(String) Writes a st ring t o t he st ream witha l ine t erminator t o t he t ext

stream. WriteLine m ethod ca n al so be used t o write t ext

representation of any type followed by line terminator.

Table 2.10 StreamWriter Methods (Source: https://docs.microsoft.com)

Following example shows you how to write to the file.

static void Main(string[] args)

 {

StreamWriter streamWriter = new StreamWriter(@"E:\BeReady.txt");

https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter.newline?view=netframework-4.8#System_IO_TextWriter_NewLine�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter?view=netframework-4.8�
https://docs.microsoft.com/�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.close?view=netframework-4.8#System_IO_StreamWriter_Close�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter.dispose?view=netframework-4.8#System_IO_TextWriter_Dispose�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.flush?view=netframework-4.8#System_IO_StreamWriter_Flush�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=netframework-4.8#System_IO_StreamWriter_Write_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter.writeline?view=netframework-4.8#System_IO_TextWriter_WriteLine�
https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter?view=netframework-4.8�
https://docs.microsoft.com/�

 172

streamWriter.Write("This is Write operation");

streamWriter.WriteLine("done by using StreamWriter class");

streamWriter.Flush();

streamWriter.WriteLine("You can write any type using Write method.");

streamWriter.WriteLine(DateTime.Now);

streamWriter.Flush();

Console.WriteLine("File write operation completed successfully");

Console.ReadLine();

 }

OUTPUT

 File write operation completed successfully

This example op en BeReady.txt f ile if e xists and o verwrite or cr eate ne w one on

given path and write on the file. You can check the file on given location.

Wrie() and W riteLine() methods write text on the stream and Fl ush() methods apply

changes to physical file or stream and clear all buffer data. Do not forget to close the

stream after completion of write operation.

To append the existing file use following constructor in above example.

StreamWriter streamWriter = new StreamWriter(@"E:\BeReady.txt", true);

To write by using specific encoding use following constructore.This constructor take

three argument

1. File Path with file name as string

2. Append (True/False)

3. Encoding (ASCII,UTF8,UTF16 etc..)

StreamWriter st reamWriter = n ew S treamWriter(@"E:\BeReady.txt", f alse,

Encoding.ASCII);

 173

Check your Progress3

1. Is StreamWriter class’ s Write() m ethod abl e t o w rite D ateTime t ype on t he

file?

A. Yes

B. No

2. Flush method is Clears all buffers for the current writer.

A. True

B. False

2.4 DIRECTORY AND DIRECTORYINFO

The D irectory and D irectoryInfo classe s are r epresent f older on t he f ile syst em.

Directory class is only contains static methods and D irectoryInfo class contains all

the m ethods of D irectory class, co nstructors and pr operties. To use D irectoryInfo

class you need to make instance of the DirectoryInfo class.

2.4.1 Directory

The D irectory class is typically performoperations like copying, m oving, r enaming,

creating, and deleting directories.

Directory class has bunch of st atic methods to cr eate new d irectory, del ete, co py,

rename or m ove d irectory. Y ou ca n al so get l ist of f iles and sub d irectories of

selected directory by using enumerable collection.

Following is list of important static methods of Directory class.

CreateDirectory(String) Creates all di rectories and

subdirectories in t he sp ecified pat h

unless they already exist.

Delete(String) Deletes an em pty directory from a

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.createdirectory?view=netframework-4.8#System_IO_Directory_CreateDirectory_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.delete?view=netframework-4.8#System_IO_Directory_Delete_System_String_�

 174

specified path.

Delete(String, Boolean) Deletes the sp ecified di rectory and, i f

indicated, any subdirectories and f iles

in the directory.

EnumerateDirectories(String) Returns an enumerable co llection of

directory names in a specified path.

EnumerateDirectories(String, String) Returns an enum erable co llection of

directory names that match a s earch

pattern in a specified path.

EnumerateDirectories(String, S tring,

SearchOption)

Returns an enum erable co llection of

directory names that match a s earch

pattern i n a sp ecified pat h, and

optionally searches subdirectories.

EnumerateFiles(String, String,

SearchOption)

Returns an enum erable co llection of

file names that match a search pattern

in a sp ecified pat h, and opt ionally

searches subdirectories.

EnumerateFiles(String) Returns an enum erable co llection of

file names in a specified path.

EnumerateFiles(String, String) Returns an enum erable co llection of

file names that match a search pattern

in a specified path.

EnumerateFileSystemEntries(String) Returns an enum erable co llection of

file nam es and di rectory names in a

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.delete?view=netframework-4.8#System_IO_Directory_Delete_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratedirectories?view=netframework-4.8#System_IO_Directory_EnumerateDirectories_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratedirectories?view=netframework-4.8#System_IO_Directory_EnumerateDirectories_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratedirectories?view=netframework-4.8#System_IO_Directory_EnumerateDirectories_System_String_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratedirectories?view=netframework-4.8#System_IO_Directory_EnumerateDirectories_System_String_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratefiles?view=netframework-4.8#System_IO_Directory_EnumerateFiles_System_String_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratefiles?view=netframework-4.8#System_IO_Directory_EnumerateFiles_System_String_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratefiles?view=netframework-4.8#System_IO_Directory_EnumerateFiles_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratefiles?view=netframework-4.8#System_IO_Directory_EnumerateFiles_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.enumeratefilesystementries?view=netframework-4.8#System_IO_Directory_EnumerateFileSystemEntries_System_String_�

 175

specified path.

Exists(String) Determines w hether t he gi ven pat h

refers to an existing directory on disk.

GetAccessControl(String) Gets a DirectorySecurity object t hat

encapsulates the acce ss control l ist

(ACL) entries for a specified directory.

GetCreationTime(String) Gets the cr eation dat e and t ime of a

directory.

GetCreationTimeUtc(String) Gets the creation dat e and t ime, i n

Coordinated U niversal Ti me (UTC)

format, of a directory.

GetCurrentDirectory() Gets the c urrent w orking di rectory of

the application.

GetDirectories(String, String,

SearchOption)

Returns the nam es of t he

subdirectories (including t heir p aths)

that m atch t he sp ecified s earch

pattern i n t he sp ecified di rectory, and

optionally searches subdirectories.

GetDirectories(String) Returns the nam es of su bdirectories

(including t heir paths) i n the specified

directory.

GetDirectories(String, String) Returns the nam es of su bdirectories

(including t heir pat hs) t hat match t he

specified se arch pat tern i n t he

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.exists?view=netframework-4.8#System_IO_Directory_Exists_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getaccesscontrol?view=netframework-4.8#System_IO_Directory_GetAccessControl_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.directorysecurity?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcreationtime?view=netframework-4.8#System_IO_Directory_GetCreationTime_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcreationtimeutc?view=netframework-4.8#System_IO_Directory_GetCreationTimeUtc_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getcurrentdirectory?view=netframework-4.8#System_IO_Directory_GetCurrentDirectory�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getdirectories?view=netframework-4.8#System_IO_Directory_GetDirectories_System_String_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getdirectories?view=netframework-4.8#System_IO_Directory_GetDirectories_System_String_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getdirectories?view=netframework-4.8#System_IO_Directory_GetDirectories_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getdirectories?view=netframework-4.8#System_IO_Directory_GetDirectories_System_String_System_String_�

 176

specified directory.

GetDirectoryRoot(String) Returns the vo lume i nformation, r oot

information, or bot h f or t he sp ecified

path.

GetFiles(String) Returns the nam es of f iles (including

their paths) in the specified directory.

GetFiles(String, String) Returns the na mes of f iles (including

their pat hs) t hat m atch t he sp ecified

search pat tern i n t he sp ecified

directory.

GetFiles(String, String,

SearchOption)

Returns the nam es of f iles (including

their pat hs) t hat m atch t he sp ecified

search pat tern i n t he sp ecified

directory, using a va lue t o det ermine

whether to search subdirectories.

GetFileSystemEntries(String) Returns the nam es of al l f iles and

subdirectories in a specified path.

GetLastAccessTime(String) Returns the dat e and t ime t he

specified f ile or di rectory was last

accessed.

GetLastAccessTimeUtc(String) Returns the dat e and t ime, i n

Coordinated U niversal Ti me (UTC)

format, t hat t he s pecified f ile or

directory was last accessed.

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getdirectoryroot?view=netframework-4.8#System_IO_Directory_GetDirectoryRoot_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getfiles?view=netframework-4.8#System_IO_Directory_GetFiles_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getfiles?view=netframework-4.8#System_IO_Directory_GetFiles_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getfiles?view=netframework-4.8#System_IO_Directory_GetFiles_System_String_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getfiles?view=netframework-4.8#System_IO_Directory_GetFiles_System_String_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getfilesystementries?view=netframework-4.8#System_IO_Directory_GetFileSystemEntries_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getlastaccesstime?view=netframework-4.8#System_IO_Directory_GetLastAccessTime_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getlastaccesstimeutc?view=netframework-4.8#System_IO_Directory_GetLastAccessTimeUtc_System_String_�

 177

GetLastWriteTime(String) Returns the dat e and t ime t he

specified f ile or di rectory was last

written to.

GetLastWriteTimeUtc(String) Returns the dat e and t ime, i n

Coordinated U niversal Ti me (UTC)

format, t hat t he s pecified f ile or

directory was last written to.

GetLogicalDrives() Retrieves the nam es of t he l ogical

drives on this computer i n t he f orm

"<drive letter>:\".

GetParent(String) Retrieves the par ent di rectory of t he

specified path, including both absolute

and relative paths.

Move(String, String) Moves a f ile or a d irectory and i ts

contents to a new location.

SetCreationTime(String, DateTime) Sets the creation date and time for the

specified file or directory.

SetCreationTimeUtc(String,

DateTime)

Sets the c reation dat e and t ime, i n

Coordinated U niversal Ti me (UTC)

format, fo r th e sp ecified fi le o r

directory.

SetCurrentDirectory(String) Sets the a pplication's cu rrent w orking

directory to the specified directory.

Sets the d ate and t ime t he sp ecified SetLastAccessTime(String,

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getlastwritetime?view=netframework-4.8#System_IO_Directory_GetLastWriteTime_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getlastwritetimeutc?view=netframework-4.8#System_IO_Directory_GetLastWriteTimeUtc_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getlogicaldrives?view=netframework-4.8#System_IO_Directory_GetLogicalDrives�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.getparent?view=netframework-4.8#System_IO_Directory_GetParent_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.move?view=netframework-4.8#System_IO_Directory_Move_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setcreationtime?view=netframework-4.8#System_IO_Directory_SetCreationTime_System_String_System_DateTime_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setcreationtimeutc?view=netframework-4.8#System_IO_Directory_SetCreationTimeUtc_System_String_System_DateTime_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setcreationtimeutc?view=netframework-4.8#System_IO_Directory_SetCreationTimeUtc_System_String_System_DateTime_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setcurrentdirectory?view=netframework-4.8#System_IO_Directory_SetCurrentDirectory_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setlastaccesstime?view=netframework-4.8#System_IO_Directory_SetLastAccessTime_System_String_System_DateTime_�

 178

DateTime) file or directory was last accessed.

SetLastAccessTimeUtc(String,

DateTime)

Sets the date and time, in Coordinated

Universal Time (UTC) format, that the

specified f ile or di rectory was last

accessed.

SetLastWriteTime(String, DateTime) Sets the date and time a directory was

last written to.

SetLastWriteTimeUtc(String,

DateTime)

Sets the date and time, in Coordinated

Universal Time (UTC) f ormat, t hat a

directory was last written to.

Table 2.11 Static Methods of Directory class (Source: https://docs.microsoft.com)

Following example shows how to use Directory class to manage directories and get

list of subdirectories.

static void Main(string[] args)

 {

 //Create new directory on G: drive

Directory.CreateDirectory("G:\\Courses");

Console.WriteLine("Directory created...");

 //Create sub directories of Courses

Directory.CreateDirectory("G:\\Courses\\MCA");

Console.WriteLine("Directory created...");

Directory.CreateDirectory("G:\\Courses\\M.Sc. IT");

https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setlastaccesstimeutc?view=netframework-4.8#System_IO_Directory_SetLastAccessTimeUtc_System_String_System_DateTime_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setlastaccesstimeutc?view=netframework-4.8#System_IO_Directory_SetLastAccessTimeUtc_System_String_System_DateTime_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setlastwritetime?view=netframework-4.8#System_IO_Directory_SetLastWriteTime_System_String_System_DateTime_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setlastwritetimeutc?view=netframework-4.8#System_IO_Directory_SetLastWriteTimeUtc_System_String_System_DateTime_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directory.setlastwritetimeutc?view=netframework-4.8#System_IO_Directory_SetLastWriteTimeUtc_System_String_System_DateTime_�
https://docs.microsoft.com/�

 179

Console.WriteLine("Directory created...");

Directory.CreateDirectory("G:\\Courses\\B. Sc. IT");

Console.WriteLine("Directory created...");

 //Print name of sub directories of Courses directory

String[] DirNames = Directory.GetDirectories("G:\\Courses");

Console.WriteLine("Sub directories of Courses directory are... ");

foreach(var dir in DirNames)

 {

Console.WriteLine(dir);

 }

Console.ReadLine();

 }

OUTPUT

Directory created...

Directory created...

Directory created...

Directory created...

Sub directories of Courses directory are...

G:\Courses\B. Sc. IT

G:\Courses\M.Sc. IT

G:\Courses\MCA

In above example by using Directory.CreateDirectory() method create new directory.

CreateDirectory() method creates new directory if directory with specified name and

path not exists.

 180

Directory.GetDirectories("G:\\Courses") methods return collections of sub directories

of specified directory as array of string.

You can also get l ist of f iles from specified directory. To t est this first create one o r

two files in M.Sc. IT directory and execute following code.

//Print name of files of M.Sc. IT directory

String[] FileNames = Directory.GetFiles("G:\\Courses\\M.Sc. IT");

Console.WriteLine("Files of directory are... ");

foreach (var file in FileNames)

 {

Console.WriteLine(file);

 }

Console.ReadLine();

OUTPUT

Files of directory are...

G:\Courses\M.Sc. IT\M.Sc(IT) Doc File.docx

2.4.2 DirectoryInfo

DirectoryInfo provides instance m ethods for cr eating, m oving, and enum erating

through directories and subdirectories. You cannot inherit DirectoryInfo class.

DirectoryInfo class have adva ntages over D irectory class if yo u ar e per form m any

operations on same directory. Directory class perform security check every time you

use its method. While in DirectoryInfo class security check performed only when you

make instance of DirectoryInfo.

DirectoryInfo class have only one constructor.

DirectoryInfo dirInfo = new DirectoryInfo("G:\\Courses");

 181

Following is list of properties.

Attributes Gets or se ts the at tributes for t he cu rrent f ile or

directory.

(Inherited from FileSystemInfo)

CreationTime Gets or sets the creation t ime of the current f ile or

directory.

(Inherited from FileSystemInfo)

CreationTimeUtc Gets or s ets the cr eation t ime, i n co ordinated

universal time (UTC), of the current file or directory.

(Inherited from FileSystemInfo)

Exists Gets a value indicating whether the directory exists.

Extension Gets the s tring r epresenting t he ex tension par t o f

the file.

(Inherited from FileSystemInfo)

FullName Gets the full path of the directory.

LastAccessTime Gets or se ts the ti me th e cu rrent fi le or d irectory

was last accessed.

(Inherited from FileSystemInfo)

LastAccessTimeUtc Gets or sets the time, in coordinated universal time

(UTC), t hat t he cu rrent f ile or directory was last

accessed.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.attributes?view=netframework-4.8#System_IO_FileSystemInfo_Attributes�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.creationtime?view=netframework-4.8#System_IO_FileSystemInfo_CreationTime�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.creationtimeutc?view=netframework-4.8#System_IO_FileSystemInfo_CreationTimeUtc�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.exists?view=netframework-4.8#System_IO_DirectoryInfo_Exists�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.extension?view=netframework-4.8#System_IO_FileSystemInfo_Extension�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.fullname?view=netframework-4.8#System_IO_DirectoryInfo_FullName�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.lastaccesstime?view=netframework-4.8#System_IO_FileSystemInfo_LastAccessTime�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.lastaccesstimeutc?view=netframework-4.8#System_IO_FileSystemInfo_LastAccessTimeUtc�

 182

(Inherited from FileSystemInfo)

LastWriteTime Gets or s ets the time w hen t he cu rrent f ile or

directory was last written to.

(Inherited from FileSystemInfo)

LastWriteTimeUtc Gets or sets the time, in coordinated universal time

(UTC), w hen t he cu rrent f ile or di rectory was last

written to.

(Inherited from FileSystemInfo)

Name Gets the name of this DirectoryInfo instance.

Parent Gets the par ent di rectory of a sp ecified

subdirectory.

Root Gets the root portion of the directory.

Table 2.12 Properties of DirectoryInfo class (Source: https://docs.microsoft.com)

Following is list of important methods of DirectoryInfo class

Create() Creates a directory.

CreateSubdirectory(String) Creates a su bdirectory or

subdirectories on t he sp ecified pat h.

The sp ecified pat h ca n be r elative t o

this instance of the DirectoryInfo class.

Delete() Deletes this DirectoryInfo if it is empty.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.lastwritetime?view=netframework-4.8#System_IO_FileSystemInfo_LastWriteTime�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.lastwritetimeutc?view=netframework-4.8#System_IO_FileSystemInfo_LastWriteTimeUtc�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.name?view=netframework-4.8#System_IO_DirectoryInfo_Name�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.parent?view=netframework-4.8#System_IO_DirectoryInfo_Parent�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.root?view=netframework-4.8#System_IO_DirectoryInfo_Root�
https://docs.microsoft.com/�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.create?view=netframework-4.8#System_IO_DirectoryInfo_Create�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.createsubdirectory?view=netframework-4.8#System_IO_DirectoryInfo_CreateSubdirectory_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.delete?view=netframework-4.8#System_IO_DirectoryInfo_Delete�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?view=netframework-4.8�

 183

Delete(Boolean) Deletes t his i nstance of

a DirectoryInfo, sp ecifying w hether t o

delete subdirectories and files.

EnumerateDirectories() Returns an enum erable co llection of

directory information i n t he c urrent

directory.

EnumerateDirectories(String) Returns an enum erable co llection of

directory information t hat m atches a

specified search pattern.

EnumerateDirectories(String,

SearchOption)

Returns an enum erable co llection of

directory information t hat m atches a

specified s earch pat tern and s earch

subdirectory option.

EnumerateFiles() Returns an enum erable co llection of

file information in the current directory.

EnumerateFiles(String) Returns an enum erable co llection of

file i nformation that matches a search

pattern.

EnumerateFiles(String, SearchOption) Returns an enum erable co llection of

file i nformation t hat m atches a

specified s earch pat tern and s earch

subdirectory option.

https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.delete?view=netframework-4.8#System_IO_DirectoryInfo_Delete_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratedirectories?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateDirectories�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratedirectories?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateDirectories_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratedirectories?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateDirectories_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratedirectories?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateDirectories_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratefiles?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateFiles�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratefiles?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateFiles_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratefiles?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateFiles_System_String_System_IO_SearchOption_�

 184

EnumerateFileSystemInfos() Returns an enum erable co llection of

file syst em i nformation i n t he c urrent

directory.

EnumerateFileSystemInfos(String) Returns an enum erable co llection of

file system information that matches a

specified search pattern.

EnumerateFileSystemInfos(String,

SearchOption)

Returns an enum erable co llection of

file system information that matches a

specified s earch pat tern and s earch

subdirectory option.

GetAccessControl() Gets a DirectorySecurity object t hat

encapsulates the acce ss control l ist

(ACL) en tries for t he di rectory

described by the

current DirectoryInfo object.

GetDirectories() Returns the su bdirectories of t he

current directory.

GetDirectories(String) Returns an ar ray of d irectories in t he

current DirectoryInfo matching t he

given search criteria.

GetDirectories(String, SearchOption) Returns an ar ray of d irectories in t he

current DirectoryInfo matching t he

given search criteria and using a value

to det ermine w hether t o s earch

https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratefilesysteminfos?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateFileSystemInfos�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratefilesysteminfos?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateFileSystemInfos_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratefilesysteminfos?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateFileSystemInfos_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratefilesysteminfos?view=netframework-4.8#System_IO_DirectoryInfo_EnumerateFileSystemInfos_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getaccesscontrol?view=netframework-4.8#System_IO_DirectoryInfo_GetAccessControl�
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.directorysecurity?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getdirectories?view=netframework-4.8#System_IO_DirectoryInfo_GetDirectories�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getdirectories?view=netframework-4.8#System_IO_DirectoryInfo_GetDirectories_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getdirectories?view=netframework-4.8#System_IO_DirectoryInfo_GetDirectories_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?view=netframework-4.8�

 185

subdirectories.

GetFiles() Returns a f ile l ist f rom t he c urrent

directory.

GetFiles(String) Returns a f ile l ist f rom t he c urrent

directory matching t he gi ven search

pattern.

GetFiles(String, SearchOption) Returns a f ile l ist f rom t he c urrent

directory matching t he gi ven search

pattern and using a va lue to determine

whether to search subdirectories.

GetFileSystemInfos() Returns an ar ray of st rongly

typed FileSystemInfo entries

representing al l t he f iles and

subdirectories in a directory.

GetFileSystemInfos(String) Retrieves an ar ray of st rongly

typed FileSystemInfo objects

representing t he f iles and

subdirectories that match the specified

search criteria.

GetFileSystemInfos(String,

SearchOption)

Retrieves an ar ray

of FileSystemInfo objects that

represent t he f iles and su bdirectories

matching the specified search criteria.

https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfiles?view=netframework-4.8#System_IO_DirectoryInfo_GetFiles�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfiles?view=netframework-4.8#System_IO_DirectoryInfo_GetFiles_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfiles?view=netframework-4.8#System_IO_DirectoryInfo_GetFiles_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfilesysteminfos?view=netframework-4.8#System_IO_DirectoryInfo_GetFileSystemInfos�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfilesysteminfos?view=netframework-4.8#System_IO_DirectoryInfo_GetFileSystemInfos_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfilesysteminfos?view=netframework-4.8#System_IO_DirectoryInfo_GetFileSystemInfos_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfilesysteminfos?view=netframework-4.8#System_IO_DirectoryInfo_GetFileSystemInfos_System_String_System_IO_SearchOption_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�

 186

MoveTo(String) Moves a DirectoryInfo instance and i ts

contents to a new path.

Refresh() Refreshes the state of the object.

(Inherited from FileSystemInfo)

Table-2.13 Methods of DirectoryInfo (Source:https://docs.microsoft.com)

Following example demonstrate use of the DirectoryInfo class.

DirectoryInfo dirInfo = new DirectoryInfo("G:\\Courses\\M.Sc. IT Subjects");
 //Create Folder on file system
dirInfo.Create();
Console.WriteLine("Directory created...");

 //Print name of sub directories of Courses directory
String[] DirNames = Directory.GetDirectories("G:\\Courses");
Console.WriteLine("Sub directories of Courses directory are... ");
foreach (var dir in DirNames)
 {
Console.WriteLine(dir);
 }
Console.ReadLine();

 //Move di rectory info i nstance f rom G:\Courses\M.Sc. I T S ubjects to
G:\Courses\M.Sc. IT directory

try
 {
dirInfo.MoveTo("G:\\Courses\\M.Sc. IT\\M.Sc. IT Subjects");
Console.WriteLine("DirectoryInfo moved to G:\\Courses\\M.Sc. IT\\ ");
 }
catch(IOException ex)
 {
Console.WriteLine(ex.Message);
 }

https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.moveto?view=netframework-4.8#System_IO_DirectoryInfo_MoveTo_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.refresh?view=netframework-4.8#System_IO_FileSystemInfo_Refresh�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�

 187

foreach(DirectoryInfo dir in dirInfo.Parent.GetDirectories())
 {
Console.WriteLine(dir.FullName);
 }

Console.ReadLine();

 //Print name of sub directories of Courses directory
Console.WriteLine("Root of the directory is " + dirInfo.Root.ToString());
Console.WriteLine("Parent of the directory is " + dirInfo.Parent.ToString());
Console.ReadLine();

 }
OUTPUT

Directory created...
Sub directories of Courses directory are...
G:\Courses\B. Sc. IT
G:\Courses\M.Sc. IT
G:\Courses\M.Sc. IT Subjects
G:\Courses\MCA

DirectoryInfo moved to G:\Courses\M.Sc. IT\
G:\Courses\M.Sc. IT\M.Sc. IT Subjects

Root of the directory is G:\
Parent of the directory is M.Sc. IT

Above code first make instance of DirectoryInfo class with path “G:\Courses\M.Sc. IT

Subjects”.

DirectoryInfo dirInfo = new DirectoryInfo("G:\\Courses\\M.Sc. IT Subjects");

Next step is to create supplied directory by using Create() method.

dirInfo.Create();

 188

To check directory is created or not print all sub directories of “G:\Courses” directory

by using Directory class.

By using directory class print all sub directories of “G:\Courses” directory.

 //Print name of sub directories of Courses directory

String[] DirNames = Directory.GetDirectories("G:\\Courses");

Console.WriteLine("Sub directories of Courses directory are... ");

foreach (var dir in DirNames)

 {

Console.WriteLine(dir);

 }

Console.ReadLine();

Now suppose we want t o move our i nstance f rom “M.Sc. I T Subjects” di rectory to

“G:\ Courses\M.Sc. IT\” directory. Use MoveTo() method with new directory path.

try
 {
dirInfo.MoveTo("G:\\Courses\\M.Sc. IT\\M.Sc. IT Subjects");
Console.WriteLine("DirectoryInfo moved to G:\\Courses\\M.Sc. IT\\ ");
 }
catch(IOException ex)
 {
Console.WriteLine(ex.Message);
 }
MoveTo() methods move all sub directories of instantiated directories to new location

and remove instantiated d irectory. I t assign reference of newly created d irectory to

existing object of DirectoryInfo class.

By using Parent and Root property you can get name of parent directory and dr ive

name.

 189

There are many other properties and methods given in table no – 2.12 and 2.13.

Check your Progress 4

1. Can w e us e bot h t he classe s Directory and D irectoryInfo t o m ove di rectory

from one location to another location?

A. Yes

B. No

2. Is GetParent() methods of D irectory class is similar to Parent pr operties of

DirectoryInfo instance?

C. Yes

D. No

2.5 FILE AND FILEINFO

File and Fi leInfo clas ses are us ed t o p erform cr eate, open, r ead, w rite, copy and

move oper ation on s ingle f ile. File c lass pr ovide s tatic methods while Fi leInfo

provides instance methods. In many cases File class static methods faster for single

operation on file. FileInfo class is basically more used to perform multiple operations

on specific file. File.Exist() method is faster than FileInfo instance’s Exist() method.

2.5.1 File

The File class provides static methods to perform create, open, read, write, copy,

delete and move operations. As all methods are static so no need to make instance

of File class to use these methods.

Following table describe important static methods of File class.

AppendAllLines(String,

IEnumerable<String>)

Appends lines to a file, and then closes the

file. If the specified file does not exist, this

method creates a file, writes the specified

lines to the file, and then closes the file.

https://docs.microsoft.com/en-us/dotnet/api/system.io.file.appendalllines?view=netframework-4.8#System_IO_File_AppendAllLines_System_String_System_Collections_Generic_IEnumerable_System_String__�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.appendalllines?view=netframework-4.8#System_IO_File_AppendAllLines_System_String_System_Collections_Generic_IEnumerable_System_String__�

 190

AppendAllText(String, String) Opens a file, appends the specified string to

the file, and then closes the file. If the file

does not exist, this method creates a file,

writes the specified string to the file, then

closes the file.

AppendAllText(String, String,

Encoding)

Appends the specified string to the file using

the specified encoding, creating the file if it

does not already exist.

AppendText(String) Creates a StreamWriter that appends UTF-

8 encoded text to an existing file, or to a

new file if the specified file does not exist.

Copy(String, String) Copies an existing file to a new file.

Overwriting a file of the same name is not

allowed.

Copy(String, String, Boolean) Copies an existing file to a new file.

Overwriting a file of the same name is

allowed.

Create(String) Creates or overwrites a file in the specified

path.

CreateText(String) Creates or opens a file for writing UTF-8

encoded text. If the file already exists, its

contents are overwritten.

https://docs.microsoft.com/en-us/dotnet/api/system.io.file.appendalltext?view=netframework-4.8#System_IO_File_AppendAllText_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.appendalltext?view=netframework-4.8#System_IO_File_AppendAllText_System_String_System_String_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.appendalltext?view=netframework-4.8#System_IO_File_AppendAllText_System_String_System_String_System_Text_Encoding_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.appendtext?view=netframework-4.8#System_IO_File_AppendText_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.copy?view=netframework-4.8#System_IO_File_Copy_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.copy?view=netframework-4.8#System_IO_File_Copy_System_String_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.create?view=netframework-4.8#System_IO_File_Create_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.createtext?view=netframework-4.8#System_IO_File_CreateText_System_String_�

 191

Decrypt(String) Decrypts a file that was encrypted by the

current account using

the Encrypt(String) method.

Delete(String) Deletes the specified file.

Encrypt(String) Encrypts a file so that only the account used

to encrypt the file can decrypt it.

Exists(String) Determines whether the specified file exists.

GetAttributes(String) Gets the FileAttributes of the file on the

path.

GetCreationTime(String) Returns the creation date and time of the

specified file or directory.

GetLastAccessTime(String) Returns the date and time the specified file

or directory was last accessed.

GetLastWriteTime(String) Returns the date and time the specified file

or directory was last written to.

Move(String, String) Moves a specified file to a new location,

providing the option to specify a new file

name.

Open(String, FileMode) Opens a FileStream on the specified path

with read/write access with no sharing.

https://docs.microsoft.com/en-us/dotnet/api/system.io.file.decrypt?view=netframework-4.8#System_IO_File_Decrypt_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.encrypt?view=netframework-4.8#System_IO_File_Encrypt_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.delete?view=netframework-4.8#System_IO_File_Delete_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.encrypt?view=netframework-4.8#System_IO_File_Encrypt_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.exists?view=netframework-4.8#System_IO_File_Exists_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.getattributes?view=netframework-4.8#System_IO_File_GetAttributes_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileattributes?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.getcreationtime?view=netframework-4.8#System_IO_File_GetCreationTime_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.getlastaccesstime?view=netframework-4.8#System_IO_File_GetLastAccessTime_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.getlastwritetime?view=netframework-4.8#System_IO_File_GetLastWriteTime_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.move?view=netframework-4.8#System_IO_File_Move_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.open?view=netframework-4.8#System_IO_File_Open_System_String_System_IO_FileMode_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.8�

 192

Open(String, FileMode,

FileAccess)

Opens a FileStream on the specified path,

with the specified mode and access with no

sharing.

Open(String, FileMode,

FileAccess, FileShare)

Opens a FileStream on the specified path,

having the specified mode with read, write,

or read/write access and the specified

sharing option.

OpenRead(String) Opens an existing file for reading.

OpenText(String) Opens an existing UTF-8 encoded text file

for reading.

OpenWrite(String) Opens an existing file or creates a new file

for writing.

ReadAllBytes(String) Opens a binary file, reads the contents of

the file into a byte array, and then closes the

file.

ReadAllLines(String) Opens a text file, reads all lines of the file,

and then closes the file.

ReadAllText(String) Opens a text file, reads all the text in the

file, and then closes the file.

ReadLines(String) Reads the lines of a file.

https://docs.microsoft.com/en-us/dotnet/api/system.io.file.open?view=netframework-4.8#System_IO_File_Open_System_String_System_IO_FileMode_System_IO_FileAccess_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.open?view=netframework-4.8#System_IO_File_Open_System_String_System_IO_FileMode_System_IO_FileAccess_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.open?view=netframework-4.8#System_IO_File_Open_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.open?view=netframework-4.8#System_IO_File_Open_System_String_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.openread?view=netframework-4.8#System_IO_File_OpenRead_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.opentext?view=netframework-4.8#System_IO_File_OpenText_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.openwrite?view=netframework-4.8#System_IO_File_OpenWrite_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.readallbytes?view=netframework-4.8#System_IO_File_ReadAllBytes_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.readalllines?view=netframework-4.8#System_IO_File_ReadAllLines_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.readalltext?view=netframework-4.8#System_IO_File_ReadAllText_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.readlines?view=netframework-4.8#System_IO_File_ReadLines_System_String_�

 193

Replace(String, String, String) Replaces the contents of a specified file

with the contents of another file, deleting the

original file, and creating a backup of the

replaced file.

Replace(String, String, String,

Boolean)

Replaces the contents of a specified file

with the contents of another file, deleting the

original file, and creating a backup of the

replaced file and optionally ignores merge

errors.

WriteAllBytes(String, Byte[]) Creates a new file, writes the specified byte

array to the file, and then closes the file. If

the target file already exists, it is

overwritten.

WriteAllLines(String, String[]) Creates a new file, write the specified string

array to the file, and then closes the file.

WriteAllText(String, String) Creates a new file, writes the specified

string to the file, and then closes the file. If

the target file already exists, it is

overwritten.

Table-2.14 Static Methods of File (Source:https://docs.microsoft.com)

In Tabl e 2 .14 m any methods have se veral ove rload m ethods to per form sa me

operation with different arguments.

Following example check given text f ile i s exist or not. I f f ile i s exist than open for

read oper ation and i f not ex ist t han cr eate new f ile f or w rite operation. I n sa me

example af ter w riting to t he file per form read oper ation and di splay file co ntent on

console.

https://docs.microsoft.com/en-us/dotnet/api/system.io.file.replace?view=netframework-4.8#System_IO_File_Replace_System_String_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.replace?view=netframework-4.8#System_IO_File_Replace_System_String_System_String_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.replace?view=netframework-4.8#System_IO_File_Replace_System_String_System_String_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.writeallbytes?view=netframework-4.8#System_IO_File_WriteAllBytes_System_String_System_Byte___�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.writealllines?view=netframework-4.8#System_IO_File_WriteAllLines_System_String_System_String___�
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.writealltext?view=netframework-4.8#System_IO_File_WriteAllText_System_String_System_String_�

 194

static void Main(string[] args)

 {

 String FilePath = "G:\\Courses\\FileMethods.txt";

if(!File.Exists(FilePath))

 {

Console.WriteLine("New File created with name - " + FilePath);

String[] fileContent = new String[5];

fileContent[0] = "Following are few methods of File class to open file";

fileContent[1] = "File.Open";

fileContent[2] = "File.OpenRead";

fileContent[3] = "File.OpenText";

fileContent[4] = "File.OpenWrite";

 //Create new file, write lines and close the file

File.WriteAllLines(FilePath, fileContent);

 }

Console.WriteLine("Content of " + FilePath + " file");

 //open, read and close an existing text file.

String[] fileTextContent = File.ReadAllLines(FilePath);

foreach(string s in fileTextContent)

 {

 Console.WriteLine(s);

 }

Console.ReadLine();

 }

 195

OUTPUT

New File created with name - G:\Courses\FileMethods.txt

Content of G:\Courses\FileMethods.txt file

Following are few methods of File class to open file

File.Open

File.OpenRead

File.OpenText

File.OpenWrite

This example dem onstrate t he way to cr eate f ile an d w rite m ultiple lines by using

WriteAllLines() m ethod i f f ile i s not ex ists. Thi s example al so demonstrate r ead

operation on same file by using ReadAllLines() method.

The Fi le class has many methods that open f ile for read or write operation. These

methods create FileStream or StreamWriter or StreamReader instance. You can use

previously learned methods of respective instance to perform operations on stream.

2.5.2 FileInfo

FileInfo class is used in case of you want to perform several operations on same file.

It provide better performance as compare to File class as security check performed

only once when instance of FileInfo class created.

FileInfo cla ss provides properties and i nstance m ethods for create, co py, del ete,

open and move operation on f iles. By using Fi leInfo c lass you can create object of

FileStream objects. This class also par t of System.IO namespace. Fi leInfo class is

not i nheritable. Y ou can use Fi leAccess, FileMode and F ileSharing o ptions while

opening file using FileInfo class.

FileInfo class has only one constructor and it take file path string as argument.

FileInfo fobj = new FileInfo(“G:\\Courses\\TestFile.txt”);

 196

Properties of FileInfo class

Attributes Gets or se ts the at tributes for t he cu rrent f ile or

directory.

(Inherited from FileSystemInfo)

CreationTime Gets or se ts the cr eation t ime of t he c urrent f ile or

directory.

(Inherited from FileSystemInfo)

CreationTimeUtc Gets or sets the creation time, in coordinated universal

time (UTC), of the current file or directory.

(Inherited from FileSystemInfo)

Directory Gets an instance of the parent directory.

DirectoryName Gets a string representing the directory's full path.

Exists Gets a value indicating whether a file exists.

Extension Gets the st ring r epresenting t he e xtension par t of t he

file.

(Inherited from FileSystemInfo)

FullName Gets the full path of the directory or file.

(Inherited from FileSystemInfo)

IsReadOnly Gets or sets a value that determines if the current file is

read only.

LastAccessTime Gets or sets the t ime t he cu rrent f ile or di rectory was

last accessed.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.attributes?view=netframework-4.8#System_IO_FileSystemInfo_Attributes�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.creationtime?view=netframework-4.8#System_IO_FileSystemInfo_CreationTime�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.creationtimeutc?view=netframework-4.8#System_IO_FileSystemInfo_CreationTimeUtc�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.directory?view=netframework-4.8#System_IO_FileInfo_Directory�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.directoryname?view=netframework-4.8#System_IO_FileInfo_DirectoryName�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.exists?view=netframework-4.8#System_IO_FileInfo_Exists�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.extension?view=netframework-4.8#System_IO_FileSystemInfo_Extension�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.fullname?view=netframework-4.8#System_IO_FileSystemInfo_FullName�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.isreadonly?view=netframework-4.8#System_IO_FileInfo_IsReadOnly�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.lastaccesstime?view=netframework-4.8#System_IO_FileSystemInfo_LastAccessTime�

 197

(Inherited from FileSystemInfo)

LastAccessTimeUtc Gets or se ts the t ime, i n co ordinated universal t ime

(UTC), t hat t he cu rrent f ile or di rectory was last

accessed.

(Inherited from FileSystemInfo)

LastWriteTime Gets or sets the time when the current f ile or directory

was last written to.

(Inherited from FileSystemInfo)

LastWriteTimeUtc Gets or se ts the t ime, i n co ordinated universal time

(UTC), w hen t he cu rrent f ile or di rectory was last

written to.

(Inherited from FileSystemInfo)

Length Gets the size, in bytes, of the current file.

Name Gets the name of the file.

Table-2.15 Properties of FileInfo class (Source: https://docs.microsoft.com)

Methods of FileInfo class

AppendText() Creates a StreamWriter that

appends text to the file represented

by this instance of the FileInfo.

CopyTo(String) Copies an existing file to a new file,

disallowing t he ove rwriting of an

existing file.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.lastaccesstimeutc?view=netframework-4.8#System_IO_FileSystemInfo_LastAccessTimeUtc�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.lastwritetime?view=netframework-4.8#System_IO_FileSystemInfo_LastWriteTime�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.lastwritetimeutc?view=netframework-4.8#System_IO_FileSystemInfo_LastWriteTimeUtc�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.length?view=netframework-4.8#System_IO_FileInfo_Length�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.name?view=netframework-4.8#System_IO_FileInfo_Name�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.appendtext?view=netframework-4.8#System_IO_FileInfo_AppendText�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.copyto?view=netframework-4.8#System_IO_FileInfo_CopyTo_System_String_�

 198

CopyTo(String, Boolean) Copies an existing file to a new file,

allowing t he ove rwriting of an

existing file.

Create() Creates a file.

CreateText() Creates a StreamWriter that w rites

a new text file.

Decrypt() Decrypts a f ile t hat w as encrypted

by the cu rrent a ccount usi ng

the Encrypt() method.

Delete() Permanently deletes a file.

Encrypt() Encrypts a file so that onl y the

account used to encrypt the file can

decrypt it.

MoveTo(String) Moves a sp ecified file t o a n ew

location, p roviding t he opt ion t o

specify a new file name.

Open(FileMode) Opens a file in the specified mode.

Open(FileMode, FileAccess) Opens a f ile in the specified mode

with re ad, w rite, o r re ad/write

access.

Open(FileMode, FileAccess, FileShare) Opens a f ile in the specified mode

with re ad, w rite, o r re ad/write

access and t he sp ecified s haring

https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.copyto?view=netframework-4.8#System_IO_FileInfo_CopyTo_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.create?view=netframework-4.8#System_IO_FileInfo_Create�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.createtext?view=netframework-4.8#System_IO_FileInfo_CreateText�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.decrypt?view=netframework-4.8#System_IO_FileInfo_Decrypt�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.encrypt?view=netframework-4.8#System_IO_FileInfo_Encrypt�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.delete?view=netframework-4.8#System_IO_FileInfo_Delete�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.encrypt?view=netframework-4.8#System_IO_FileInfo_Encrypt�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.moveto?view=netframework-4.8#System_IO_FileInfo_MoveTo_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.open?view=netframework-4.8#System_IO_FileInfo_Open_System_IO_FileMode_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.open?view=netframework-4.8#System_IO_FileInfo_Open_System_IO_FileMode_System_IO_FileAccess_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.open?view=netframework-4.8#System_IO_FileInfo_Open_System_IO_FileMode_System_IO_FileAccess_System_IO_FileShare_�

 199

option.

OpenRead() Creates a read-only FileStream.

OpenText() Creates a StreamReader with

UTF8 encoding that reads from an

existing text file.

OpenWrite() Creates a write-only FileStream.

Refresh() Refreshes the state of the object.

(Inherited from FileSystemInfo)

Replace(String, String) Replaces t he co ntents of a

specified file with the f ile described

by the cu rrent FileInfo object,

deleting t he or iginal f ile, a nd

creating a backu p of t he r eplaced

file.

Replace(String, String, Boolean) Replaces t he co ntents of a

specified file with the f ile described

by the cu rrent FileInfo object,

deleting t he or iginal f ile, a nd

creating a backu p of t he r eplaced

file. A lso sp ecifies w hether t o

ignore merge errors.

ToString() Returns the pat h as a st ring. U se

the Name property for the full path.

Table-2.14 Instance Methods of FileInfo (Source: https://docs.microsoft.com)

https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.openread?view=netframework-4.8#System_IO_FileInfo_OpenRead�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.opentext?view=netframework-4.8#System_IO_FileInfo_OpenText�
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.openwrite?view=netframework-4.8#System_IO_FileInfo_OpenWrite�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.refresh?view=netframework-4.8#System_IO_FileSystemInfo_Refresh�
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.replace?view=netframework-4.8#System_IO_FileInfo_Replace_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.replace?view=netframework-4.8#System_IO_FileInfo_Replace_System_String_System_String_System_Boolean_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo?view=netframework-4.8�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.tostring?view=netframework-4.8#System_IO_FileInfo_ToString�
https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo.name?view=netframework-4.8#System_IO_FileInfo_Name�

 200

Let’s open existing file - G:\Courses\FileMethods.txt and append the text of this file.

Append option is live old content of the file as it is and add new content at the end of

file content.

static void Main(string[] args)

 {

String FilePath = "G:\\Courses\\FileMethods.txt";

 FileInfo FileObj = new FileInfo(FilePath);

 //Write on to file using StreamWriter

 StreamWriter sw = FileObj.AppendText();

sw.WriteLine("Following are few methods of FileInfo class to open file");

sw.WriteLine("Open(FileMode)");

sw.WriteLine("OpenRead()");

sw.WriteLine("OpenWrite()");

sw.WriteLine("OpenText()");

sw.Flush();

sw.Close();

 //Open to read from file using StreamReader

 StreamReader sr = FileObj.OpenText();

Console.WriteLine("Content of File - " + FilePath);

Console.WriteLine(sr.ReadToEnd());

sr.Close();

Console.ReadLine();

 }

OUTPUT:

Content of File - G:\Courses\FileMethods.txt

Following are few methods of File class to open file

 201

File.Open

File.OpenRead

File.OpenText

File.OpenWrite

Following are few methods of FileInfo class to open file

Open(FileMode)

OpenRead()

OpenWrite()

OpenText()

Check your Progress 5

1. _________ property of FileInfo class used to get file extension.

A. GetExtension

B. SetExtension

C. Extension

D. None of Above

2. _________ is return type of Open() method of File class.

A. FileStream

B. StreamWriter

C. StreamReader

D. None of Above

3. FileInfo class provides methods to write on to file.

A. True

B. False

 202

2.6PARSING PATHS

In windows and other operating system file system is used to access file or directory.

Each oper ating syst em has specific format f or pat h t o acce ss f ile or di rectory.

Windows use following format to represent path of file or directory.

Drive letter followed by volume separator (:)

Example: C: , D:

Directory Separator (\)

Example: C:\TempDir\

Path ca n be l ocation of di rectory or l ocation of f ile. Fi le ca n b e i dentify by using

extension. E xtension i s used t o i dentify file t ype. M any operating syst em l imit

extension size three ch aracter but i t can be d ifferent base o n operating s ystem t o

operating system.

File Extension Separator (.)

Example: C:\TempDir\MyFile.txt

Path can be relative or absolute. Absolute path start with volume or drive character.

Contains drive separator, directory name and drive separator.

Example : C:\TempDir\

Relative path starts with directory name or with current directory.

Example : Subjects\SubjectNames.txt

.Net framework providestatic class Path to parse file or directory path. Path class is

part of System.IO namespace. Path class works with instance of string that contains

path. Path class has following static methods.

 203

ChangeExtension(String, String) Changes the ex tension of a p ath

string.

Combine(String[]) Combines an ar ray of st rings into a

path.

Combine(String, String) Combines two strings into a path.

Combine(String, String, String) Combines three strings into a path.

Combine(String, String, String, String) Combines four strings into a path.

GetDirectoryName(String) Returns the di rectory information for

the specified path string.

GetExtension(String) Returns the extension (including the

period " .") of t he specified path

string.

GetFileName(String) Returns the f ile name and e xtension

of the specified path string.

GetFileNameWithoutExtension(String) Returns the f ile name of t he

specified path st ring w ithout t he

extension.

GetFullPath(String) Returns the abso lute pat h f or t he

specified path string.

https://docs.microsoft.com/en-us/dotnet/api/system.io.path.changeextension?view=netframework-4.6.1#System_IO_Path_ChangeExtension_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.combine?view=netframework-4.6.1#System_IO_Path_Combine_System_String___�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.combine?view=netframework-4.6.1#System_IO_Path_Combine_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.combine?view=netframework-4.6.1#System_IO_Path_Combine_System_String_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.combine?view=netframework-4.6.1#System_IO_Path_Combine_System_String_System_String_System_String_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getdirectoryname?view=netframework-4.6.1#System_IO_Path_GetDirectoryName_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getextension?view=netframework-4.6.1#System_IO_Path_GetExtension_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getfilename?view=netframework-4.6.1#System_IO_Path_GetFileName_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getfilenamewithoutextension?view=netframework-4.6.1#System_IO_Path_GetFileNameWithoutExtension_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getfullpath?view=netframework-4.6.1#System_IO_Path_GetFullPath_System_String_�

 204

GetInvalidFileNameChars() Gets an ar ray containing t he

characters that are not allowed in file

names.

GetInvalidPathChars() Gets an ar ray containing t he

characters that are not al lowed i n

path names.

GetPathRoot(String) Gets the root directory information of

the specified path.

GetRandomFileName() Returns a random folder name or file

name.

GetTempFileName() Creates a uniquely named, zero-byte

temporary file on d isk and r eturns

the full path of that file.

GetTempPath() Returns the pat h of t he cu rrent

user's temporary folder.

HasExtension(String) Determines whether a path includes

a file name extension.

IsPathRooted(String) Returns a va lue i ndicating w hether

the sp ecified pat h st ring co ntains a

root.

Table-2.15 Static Methods of Path class (Source: https://docs.microsoft.com)

https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getinvalidfilenamechars?view=netframework-4.6.1#System_IO_Path_GetInvalidFileNameChars�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getinvalidpathchars?view=netframework-4.6.1#System_IO_Path_GetInvalidPathChars�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getpathroot?view=netframework-4.6.1#System_IO_Path_GetPathRoot_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.getrandomfilename?view=netframework-4.6.1#System_IO_Path_GetRandomFileName�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettempfilename?view=netframework-4.6.1#System_IO_Path_GetTempFileName�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettemppath?view=netframework-4.6.1#System_IO_Path_GetTempPath�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.hasextension?view=netframework-4.6.1#System_IO_Path_HasExtension_System_String_�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.ispathrooted?view=netframework-4.6.1#System_IO_Path_IsPathRooted_System_String_�
https://docs.microsoft.com/�

 205

Path class pr ovides fields to s et di rectory separator ch aracter, pat h se parator

character and volume separator character. All this fields have default values so only

useful if platform specific separator you want to set.

AltDirectorySeparatorChar Provides a pl atform-specific alternate ch aracter

used to separate directory levels in a path string

that r eflects a hi erarchical f ile syst em

organization.

DirectorySeparatorChar Provides a platform-specific character use d t o

separate di rectory levels in a pat h st ring t hat

reflects a hierarchical file system organization.

InvalidPathChars Provides a pl atform-specific array of ch aracters

that cannot be specified in path string arguments

passed to members of the Path class.

PathSeparator A pl atform-specific separator ch aracter use d t o

separate path strings in environment variables.

VolumeSeparatorChar Provides a pl atform-specific volume se parator

character.

Table-2.16 Fields of Path class (Source: https://docs.microsoft.com)

Following example p arse gi ven pat h i nto V olume na me, Ful l P ath, Fi le N ame and

File Extension.

static void Main(string[] args)

 {

string path = @"G:\Courses\M.Sc. IT\M.Sc. IT Subjects\Subjects.txt";

https://docs.microsoft.com/en-us/dotnet/api/system.io.path.altdirectoryseparatorchar?view=netframework-4.6.1�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.directoryseparatorchar?view=netframework-4.6.1�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.invalidpathchars?view=netframework-4.6.1�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path?view=netframework-4.6.1�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.pathseparator?view=netframework-4.6.1�
https://docs.microsoft.com/en-us/dotnet/api/system.io.path.volumeseparatorchar?view=netframework-4.6.1�
https://docs.microsoft.com/�

 206

 //Parse Drive name from path

Console.WriteLine("Volume / Drive name :" + Path.GetPathRoot(path));

 //Parse direcory path from path

Console.WriteLine("Directory : " + Path.GetDirectoryName(path));

 //Parse file name from path

Console.WriteLine("File name : " + Path.GetFileName(path));

 //Parse extension of file

Console.WriteLine("Extension of File : " + Path.GetExtension(path));

 Console.ReadLine();

 }

OUTPUT

Volume / Drive name :G:\

Directory : G:\Courses\M.Sc. IT\M.Sc. IT Subjects

File name : Subjects.txt

Extension of File : .txt

Above example provides us drive name, directory name with full path, file name from

path and extensions of file. This example not check for actually the directory and file

exists on file system. Path class is useful to create valid path for file system.

Check your Progress 6

1. Path class performs operations on __________ instances that contain f ile or

directory path information.

A. FileInfo

B. DirectoryInfo

 207

C. String.

D. None of Above

2. _________ method return absolute path.

A. GetDirectoryName()

B. GetFullPath()

C. GetPathRoot()

D. None of Above

2.7LET US SUM UP

In this unit you are learn about managing f iles and di rectories on f ile system using

different static and instance classes provided by System.IO name space. To perform

read or w rite oper ation on f ile f irst yo u need t o cr eate st ream. S tream i s a

intermediator between physical file and application.

There ar e t hree classe s to cr eate st ream. Fi leStream, S treamWriter a nd

StreamReader are these classes. Fi leStream works with al l types file as it is works

with bytes. It preferable when you are working with binary data.

StreamWriter and S treamReader i s useful t o w orks with t ext f ile w ith sp ecific

encoding or def ault enco ding. To per form w rite oper ation on t ext f ile us e

StreamWriter class. To per form r ead o peration u se S treamReader cl ass. B oth

classes provides many useful methods for write and read operation.

To cr eate, del ete, m ove or co py directory on f ile syst em S ystem.IO na mespace

provides Directory and DirectoryInfo class. For single operation on the directory use

static class Directory. For m ultiple oper ation on sa me di rectory use D irectoryInfo

class.

To manage files on file system System.IO namespace provides static File class and

FileInfo i nstance cla ss. S ame as Directory and D irectoryInfo class for singl e

operation use Fi le class and for multiple operation on same f ile use Fi leInfo class.

 208

DirecoryInfo and Fi leInfo class pr ovides better per formance i n ca se of m ultiple

operation you want to perform on same directory and file respectively.

To parse path or create path .net framework provide static class Path. It is useful to

validate the path, retrieve volume, di rectory, f ilename and f ile extension f rom given

path as string.

The sco pe of t his material i s v ery limited but yo u c an e xperiment yo urself al l t he

methods described in respective classes.

2.8CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1
Answer – 1: D

Write is not a FileMode

Answer – 2: C

Encoding.ASCII.GetBytes(fileData)

Check your Progress 2
Answer – 1: A

Read() method read next character from stream.

Answer – 2: D

None of Above

Check your Progress 3
Answer – 1: A

YES, Write() method able to works with DateTime type.

Answer – 2: B

True, Flush() method clean all buffer data and writes to physical file.

 209

Check your Progress 4
Answer – 1: A

Yes Directory class has Move() method and DirectoryInfo class has MoveTo()

method.

Answer – 2: A

Yes, GetParent() of Directory class and Parent property of DirectoryInfo class return

DirectoryInfo object

Check your Progress 5
Answer – 1: C

Extension property is used to get extension of file.

Answer – 2: A

The return type of Open() method is FileStream.

Answer – 3: B

False, To perform write operation you need to use StreamWriter or FileStream.

Check your Progress 6
Answer – 1: C

Path class works with instance of String that represent relative or absolute path.

Answer – 2: B

GetFullPath() method return absolute path.

2.9 FURTHER READING

• Chapter 24: Manipulating Files and the Registry

Christian Nagel, B ill E vjen, Ja y Glynn, K arli W atson, M organ S kinner,

Professional C# 2012 And .Net 4.5, Wrox Publication

• Chapter 14: Using IO

Herbert S childt, C # 4. 0: Th e C omplete Reference, The M cGraw-Hill

Companies

 210

• System.IO Namespace

• Make method list of FileStream, StreamWriter, StreamReader with parameter
and return type.

https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netframework-

4.6.2

2.10ASSIGNMENTS

2.11ACTIVITIES

• Activity-1

Develop c onsole application t hat per form di rectory manipulation (Create,

Delete, C opy, M ove with su b directory and f iles) on f ile sy stem using

Directory and DirectoryInfo class.

https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netframework-4.6.2�
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netframework-4.6.2�

Website : www.baou.edu.in | Email : office.scs@baou.edu.in

BAOU
Educa�on
for All

	9TBoxing and unboxing
	MSCIT - 301.pdf
	Page 1

	MSCIT SEM - 3 BACK SIDE.pdf
	Page 8

	MCA Book Cover-6-8.pdf
	Page 6
	Page 7
	Page 8

	MCA Book Cover-6-8.pdf
	Page 6
	Page 7
	Page 8

