
Master of Computer Applica�on (MCA)

So�ware and Engineering
So�ware Project Management

MCA-105

Recognised by

UGC-DEB
Open and Distance

Learning (ODL)
 Programmes

Entitled by
UGC-DEB

Online (OL)
Programmes

All India Council for
 Technical Education

(AICTE)

Approved by

(Established by Government of Gujarat)

Dr. Babasaheb Ambedkar
Open University

BAOU
Educa�on
for All

Software
Engineering and
Software Project
Management

2023

Dr. Babasaheb Ambedkar Open University

Software Engineering and Software Project Management

Course Writers

Dr. Ruchita Shah Assistant Professor,

Department of Computer Science,
Gujarat Vidyapith, Ahmedabad

Mr. Nitin Shah Director,
Techsmith Solutions,
Ahmedabad

Dr. Kamesh Raval Assistant Professor,
Som Lalit Institute of Computer Application
Ahmedabad

Dr. Utpal Barman Girijananda Chowdhury Institute of
Management and Technology (GIMT),
Guwahati

Content Reviewer

Prof. (Dr.) Jyoti Pareek Professor, Department of Computer Science,

Rollwala Computer Centre, Gujarat University,
Ahmedabad

Content Editors

Prof. (Dr.) Nilesh K. Modi Professor and Director, School of

Computer Science,
Dr. Babasaheb Ambedkar Open University

Nilesh Bokhani Assistant Professor
School of Computer Science,
Dr. Babasaheb Ambedkar Open University

Copyright © Dr. Babasaheb Ambedkar Open University – Ahmedabad. 2023

ISBN- 978-81-965351-4-8

Acknowledgement: The content in this book is modifications
based on the work created and shared by the Krishna Kanta
Handiqui State Open University for the subject System analysis
and Design, Unit-15 used according to terms described in
Commons Attribution-Non Commercial-Share Alike 4.0
License (international)

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad
While all efforts have been made by editors to check accuracy of the content, the
representation of facts, principles, descriptions and methods are that of the respective
module writers. Views expressed in the publication are that of the authors, and do not
necessarily reflect the views of Dr. Babasaheb Ambedkar Open University. All
products and services mentioned are owned by their respective copyrights holders,
and mere presentation in the publication does not mean endorsement by Dr.
Babasaheb Ambedkar Open University. Every effort has been made to acknowledge
and attribute all sources of information used in preparation of this learning material.
Readers are requested to kindly notify missing attribution, if any.

iv

Block-1: Introduction

UNIT-1
Introduction to Software Engineering 02

UNIT-2
Software Process Models 16

UNIT-3

Evolutionary Process Models 27

UNIT-4
Agile Process Model 38

Block-2: Software Measurement & Quality
Assurance

UNIT-1
Software Measurement and Estimation 55

UNIT-2
Quality Concepts and Approaches 83

UNIT-3
Technical Metrics for Software 101

UNIT-4
Software Quality Assurance 120

Dr. Babasaheb
Ambedkar Open
University

MCA-105

v

Block-3: Software Requirement and Analysis Model

and Software Designing

UNIT-1

Requirement Engineering Process 133

UNIT-2

Structured Analysis Modeling 148

UNIT-3

Object Oriented Analysis and Design 168

UNIT-4

Software Design 202

Block-4: Software Testing and Software Project
Management

UNIT-1

Quality Concepts and Approaches 214

UNIT-2

Testing Levels and Debugging 238

UNIT-3

Software Testing Methods 262

UNIT-4

Software Project Management 294

1

 Block-1

Introduction

2

Unit 1: Introduction to Software
Engineering

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Role of Software

1.4. Types of Software

1.5. Software Engineering- A Layered Technology

1.6. A process Framework

1.7. Umbrella activities

1.8. Capability Maturity Model Integration (CMMI)

1.9. Let Us Sum Up

1.10. Check your Progress: Possible Answers

1

3

1.1 LEARNING OBJECTIVE

The objective of this chapter is to introduce concept of software engineering and

related terms. When you will read this chapter you will :

 Understand what is software and types of software;

 Get insight of software engineering, process framework and umbrella

activities;

 Gain knowledge about capability maturity model.

1.2 INTRODUCTION

Computer software is the product that software engineers build. It encompasses

programs, database, documents. Now a days computer software is included in

majority of the products. It has become pervasive in commerce, culture and our

everyday activities.

A textbook definition of software can be: software is (1) set of instructions (programs)

that when executed provide desired feature, function and performance (2) data

structure that allows program to adequately manipulate information and (3)

documents that describes operations and use of programs.

1.3 ROLE OF SOFTWARE

Software serves dual roles. It is a product as well as a means to produce a new

product. As a product, it allows users to utilize computing potential of computer

hardware. As a product, software transforms information through various processes.

It acquires information from various input sources. It manages information by

performing processes on it such as sorting. It produces information as a result of

processes. It modifies information to the needs of users. It formats information for

display. And it transmits information through network. These information can be a

simple one bit of data or can be a complex like multimedia presentation. As a vehicle

to deliver product, software controls hardware (operating system), controls

communication of information over network, and allows creating & controlling other

programs.

4

Software delivers most important product of our time, the information. It can

transform personal data, manage business information to enhance competitiveness.

It provides gateway to worldwide information networks. Role of computer software

has changed tremendously over span of more than 60 years.

We have seen tremendous improvement in hardware performance and its

computing architecture over the years. Size of its memory and storage devices has

improved drastically. It offers variety of input and output devices. These all has

resulted in a more sophisticated and complex computer-based system. But such

tremendous changes are not seen in the ways software are being built and

delivered. Many questions arise:

- Why does software need longer time to finish?

- Why are software development costs so high?

- Why finding errors before delivering software to customers is still impossible?

- Why maintenance of existing software requires so much time and cost?

- Why we face difficulty in measuring software development and maintenance

progress?

These questions have led to adoption of software engineering practices.

1.4 TYPES OF SOFTWARE

Information content & information determinacy determine type of software

applications. Content refers to input & output data, determinacy refers to

predictability of order & timing of information

System software : These are the programs that service other program such as

operating system. some operating systems process complex & determinate info

whereas some operating systems process indeterminate data. Characteristics of

such operating systems are heavy interaction with hardware, multiple user,

concurrent operations that require scheduling, resource sharing, process

management, complex data structure, multiple external interface etc.

Application software: These are standalone programs that solve a specific

business needs. Such applications facilitate business operations and decision

5

making. Some software are also used to control real-time business functions for e.g.

Point of sale transaction processing, real time manufacturing etc.

Engineering/scientific software: This software can be characterize as number

crunching algorithms which range from astronomy to volcanology, from molecular

biology to automated manufacturing. Some examples are : Computer Assisted

Designing (CAD), weather forecasting systems etc.

Embedded software: these software reside within a product or system. They are

used to implement control features for end users. They generally have limited

functions.

Product-line software: Such software provide specific capability for use by many

different customers. These software address mass consumer markets e.g. Word

processor, Spreadsheets etc.

Web-applications: These are wide range of application stored as set of linked

hypertext files. Nowadays webapps give sophisticated computation by integrating

corporate databases & business applications.

Artificial Intelligence software : these software uses nonnumeric algorithm to solve

complex problems that cannot be solved by computation. Applications include

robotics, expert system, artificial neural network etc.

Ubiquitous computing software: Rapid growth of wireless networking has led to

distributed computing. They pose challenge to software engineers to develop such

systems that allow small devices and computers to communicate across vast

network.

Net sourcing : World Wide Web has become a computing engine & content

provider both. There is a need to provide simple & sophisticated applications that

benefits targeted end-users worldwide.

open source software : A policy of distribution of source code for system

applications to customers has made source codes available for local modifications.

Software developers need to build self -descriptive source code along with

techniques that allow users to know what changes have been made to the software.

The New Economy software : The dot-com economy lead to new applications that

facilitate mass communication and mass product distribution.

6

Check Your Progress 1

Based on what you have learned so far categorize following software.

1. Tally

2. Ubuntu

3. Java

4. Avionics system

5. Amzon.com

6. Online banking software

7. Robot system

1.5 SOFTWARE ENGINEERING- A LAYERED TECHNOLOGY

There exists many definitions for software engineering. Fritz Bauer proposed a

definition:

―Software Engineering is establishment & use of sound engineering principles in

order to obtain economical software that is reliable & works efficiently on real

machine‖.

This definition provides baseline. IEEE developed a more comprehensive definition :

― Software Engineering (1) is the application of a systematic, disciplined &

quantifiable approach to the development, operation & maintenance of software; i.e.

the application of engineering to software and (2) the study of approaches as in (1)

Software engineering is a layered technology. As shown in the figure, commitment

to quality is provide bedrock to software engineering. An engineering approach must

have a focus on quality which provides continuous process improvement culture.

Figure-1 Software Engineering Layers

7

Process layer serves as foundation for software engineering. This layer holds

technology layers together and enables timely & rational development. Process

defines a framework with activities that are for effective delivery of software

engineering technology. Process also forms basis for management to monitor and

control of software projects.

Methods provide technical how to for building software. It encompasses many tasks

including communication, requirement analysis, design modelling, program

construction, testing & support.

Tools provide automated/semi-automated support for process and methods. It

combines software, hardware & database to create software engineering

environment.

1.6 A PROCESS FRAMEWORK

Software process – To build any product, a series of predictable steps, a road map,

are designed. It is called a process. Same applies to software. Software process

helps achieve timely high quality result. It consists of a framework for tasks that are

required to build high quality software.

A process framework creates the foundation for software process. It begins with

identifying framework activities. These activities are applicable to all software

projects. Framework also encompass a set of umbrella activities that are applicable

across entire software process.

Figure-2 Software ProcessFramework

8

Each framework activity consist of a number of software engineering tasks that

accomplishes some part of software. Majority of software follow generic process

framework consisting of : communication, planning, modelling, construction and

deployment.

Communication : Refers to communication and collaboration with customer for

requirement gathering.

Planning : This activity refers to software engineering work plan to be followed. It

deals with technical tasks, schedule, resources, risk associated with software, work

products to be produced etc.

Modelling: It consists of analysis and design. Analysis creates analysis model.

Design models is created from analysis model. Design model enables developer

and customer to understand software requirements and if design will achieve it.

Construction : Refers to code generation and testing; either manually or

automated.

Deployment : Completed software is delivered to customer who then evaluate it and

provide feedback.

These five framework activities are applicable for the development of small project or

a large and complex computer based systems alike.

1.7 UMBRELA ACTIVITIES

All framework activities are surrounded by umbrella activities. Umbrella activities are

applied throughout software project. If applied systematically, these activities ensure

successful completion of project.

9

Figure-3Umbrella Activities

Tracking and Control – The developing team accesses project plan against

predefined schedule. If they find that project is not going according to predefined

schedule, necessary actions are taken to maintain the schedule.

Technical reviews - The aim of technical reviews are to detect quality problems and

suggest improvements. The technical person focuses on the quality of the software

from the customer point of view.

Quality assurance – Quality Assurance is conducted assess software quality. For

example, during the software development meetings are conducted at every stage of

development to find out the defects and suggest improvements to produce good

quality software.

Configuration management - This activity manages the effect of change

throughout the software process.

Documentation – This activities that are needed to create the documents, forms,

lists, logs and user manuals for the software being developed.

10

Re-usability –This activity defines the specification for reuse of the products. It also

set up a mechanism by which a reusable components are developed and used.

Measurement and metrics – Software can be measured directly and indirectly.

Direct measures are line of code, cost etc. Indirect measures are quality,

functionality etc. This activity defines how software can be measured and using

which metrics. It also help develop new metrics for developer.

Risk management – Risk is an event that may or may not occur. Many risks are

associated with any project. This activity assesses if risk may occur and if they occur

how it will affect project.

Check Your Progress 2

1. Which layers are there in software engineering?

2. What is the meaning of Modelling in process framework?

3. What is an umbrella activity?

4. Which umbrella activity is conducted when a developer want to use existing

small program in new project?

1.8 CAPABILITY MATURITY MODEL INTEGRATION (CMMI)

The Capability Maturity Model Integration, or CMMI, is a process model that provides

a clear definition of what an organization should do to promote behaviors that lead to

improved performance. With five ―Maturity Levels‖ the CMMI defines the most

important elements that are required to build great products, or deliver great

services, and wraps them all up in a comprehensive model.

CMM Examples:

People CMM: Develop, motivate and retain project talent.

Software CMM: Enhance a software focused development and maintenance

capability.

11

Figure-4Five maturity levels of CMMI

Maturity level 1- Performed : At this level, processes are usually ad hoc and

chaotic. The organization usually does not provide a stable environment and do not

use any proven processes. Such organizations often produce products and services

that work; however, they frequently exceed the budget and schedule of their

projects. Characteristics of such organizations are a tendency to over commit,

abandon processes in the time of crisis, and not be able to repeat their past

successes.

Maturity level 2 – Managed : At this level, an organization has achieved all the

specific and generic goals of the maturity level 2 process areas. projects are

performed and managed according to their documented plans. Organization ensures

that project requirements are managed and that processes and work products are

planned, performed, measured, and controlled. Work products are reviewed with

stakeholders.

Maturity level 3 – Defined : At this level, processes are well characterized and

understood, and are described in standards, procedures, tools, and methods. At

maturity level 3, the standards, process descriptions, and procedures for a project

12

are tailored from the organization's set of standard processes to suit a particular

project or organizational unit. The organization's set of standard processes includes

the processes addressed at maturity level 2 and maturity level 3. As a result, the

processes that are performed across the organization are consistent except for the

differences allowed by the tailoring guidelines. Processes are managed more

proactively using an understanding of the interrelationships of the process activities

and detailed measures of the process, its work products, and its services.

Maturity level 4 – Quantitatively managed : At maturity level 4 Sub-processes are

selected that significantly contribute to overall process performance. These selected

sub-processes are controlled using statistical and other quantitative techniques.

Quantitative objectives for quality and process performance are established and

used as criteria in managing processes. Quantitative objectives are based on the

needs of the customer, end users, organization, and process implementers. Quality

and process performance are understood in statistical terms and are managed

throughout the life of the processes. For the processes, detailed measures of

process performance are collected and statistically analyzed. Quality and process

performance measures are incorporated into the organization‘s measurement

repository to support fact-based decision making in the future.

Maturity level 5 – Optimizing : At this level, processes are continually improved

based on a quantitative understanding of the common causes of variation inherent in

processes. Focus is on continually improving process performance through both

incremental and innovative technological improvements. Through quantitative

process improvements, changing business objectives are revised. Improvements in

processes are measured and evaluated against the quantitative process-

improvement objectives.

Optimizing processes that are agile and innovative depends on the participation of

an empowered workforce aligned with the business values and objectives of the

organization. The organization's ability to rapidly respond to changes and

opportunities is enhanced by finding ways to accelerate and share learning.

Improvement of the processes is inherently part of everybody's role, resulting in a

cycle of continual improvement.

13

Each maturity level provides a necessary foundation for effective implementation of

processes at the next level. Higher level processes have less chance of success

without the discipline provided by lower levels.

The CMMI defines each process area in terms of specific goals and specific

practices required to achieve these goals. To achieve a maturity level, the specific

goals and associated practices must be achieved.

Level Focus Process Area Result

5 – Optimizing Continuous

process

improvement

 Organizational Innovation

and deployment

 Continuous analysis and

improvement

Highest quality

& low risk

4 –

Quantitatively

managed

Quantitatively

managed

 Organizational Process

Performance

 Quantitative Project

Management

Higher quality/

lower risks

3 – Defined Standardization

of process

 Requirements

Development

 Technical Solution

 Product Integration

 Verification

 Validation

 Organizational Process

Focus

 Organizational Process

Definition

 Organizational Training

 Integrated Project

Management

 Risk Management

 Decision Analysis and

Resolution

Medium quality/

medium risks

14

  Integrated Teaming

2 - Managed Basic project

management

 Requirements

Management

 Project Planning

 Project Monitoring and

Control

 Supplier Agreement

Management

 Measurement and

Analysis

 Process and Product

Quality Assurance

 Configuration

Management

Low quality/

high risks

1 – Performed Process is ad-

hoc and

informal

 Lowest

quality/highest

risks

Table-1 CMMI levels with process areas and result

1.9 LET US SUM UP

Software is the key element in any computer-based system. Over past 60-70 years

software has evolved. Yet we still have trouble developing high quality software. The

intent of software engineering is to provide a framework for building higher quality

software. Software engineering is a discipline that integrates process, methods and

tools for development of computer software. Whatever the size and complexity of a

project, all must undergo a definite process. Each process has defined set of

framework activities. each framework activity is covered by a set of umbrella

activities that span entire process. The capability maturity model integration (CMMI)

is a model that describes specific goals, practices and capabilities that should be

present in mature software process.

15

1.10 CHECK YOUR PROGRSS: POSSIBLE ANSWERS

Check Your Progress 1

Based on what you have learned so far categorize following software.

1. Tally _Product-line software

2. Ubuntu _System software

3. Java _Application software

4. Avionics system _Engineering/scientific software

5. Amzon.com _New Economy software

6. Online banking software _ New Economy software

7. Robot system Artifitial Intelligence software

Check Your Progress 2

1. Layers in software engineering:

Quality

focus,

process,

methods

tools

2. In Modelling phase of process framework analysis and design model for the

software is created.

3. Umbrella activities are carried throughout the project irrespective of its size

which ensures successful completion of project.

4. When a developer want to use existing small program in new project

Re-usability is conducted among various umbrella activity.

16

Unit 2: Software Process Models
 2

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. The waterfall Model

2.4. The Incremental Model

2.5. The RAD model

2.6. Let Us Sum Up

2.7. Check your Progress: Possible Answers

17

2.1 LEARNING OBJECTIVE

The objective of this chapter is to introduce concept of software process. Software

process is a set of activities carried out throughout software development. When

you will read this chapter you will :

 Understand concept of software process;

 Learn about various linear process models;

 Gain knowledge about advantages and disadvantages of various process

models.

2.2 INTRODUCTION

Every software engineering organization have a described set of framework activities

(as discussed in chapter 1) as part of their software development strategy. These set

of prescribed framework activities are known as process models. Every software

project have different framework activity. Thus for different software project different

process model is applied based on nature of project, methods, available tools,

controls and deliverables required. These process models are also known as

Software Development Life Cycle (SDLC). All process model are categorized in 2

category: (1) linear and (2) evolutionary. In this chapter we will examine linear

software process models.

2.3 THE WATERFALL MODEL

Also known as Classical Life Cycle Model or Linear Sequential Model because of its

sequential nature. Many a times requirements of a software project is very well

understood and developer can work in a linear fashion from communication through

deployment then waterfall model is applicable.

In "The Waterfall" approach, the whole process of software development is divided

into separate phases. The outcome of one phase acts as the input for the next phase

sequentially. Thus each phase must be completed before the next phase can begin

and there is no overlapping in the phases.

18

Figure-5 The Waterfall Model

Requirement Gathering − All possible requirements of the software to be

developed are collected and documented in a requirement specification document.

System Design − The requirement specifications from first phase are analyzed and

converted into system design. This system design helps in specifying hardware and

system requirements and helps in defining the overall system architecture.

Implementation − With inputs from the system design, the system is first developed

in small programs called units, which are integrated in the next phase. Each unit is

developed and tested for its functionality, which is referred to as Unit Testing.

Testing − All the units developed in the implementation phase are integrated into a

system after testing of each unit. Post integration the entire system is tested for any

faults and failures.

Deployment of system − Once the functional and non-functional testing is done; the

product is deployed in the customer environment or released into the market.

Maintenance − There are some issues which come up in the client environment. To

fix those issues, patches are released. Also to enhance the product, some better

versions are released. Maintenance is done to deliver these changes in the customer

environment.

19

All these phases are cascaded to each other in which progress is seen as flowing

steadily downwards (like a waterfall) through the phases. Every software developed

is different and requires a suitable SDLC approach to be followed based on the

internal and external factors. Waterfall model will be most appropriate where:

 Requirements are very well documented, clear and fixed

 Product definition is stable

 Technology is understood and is not dynamic

 Ample resources with required expertise are available to support the product

 The project is simple and short

Advantages :

Waterfall model allows for departmentalize and controlled development. A schedule

can be set with deadlines for each stage of development and a product can proceed

through the development process model phases one by one. Major advantages of

the Waterfall Model are:

 It is quite simple and easy to understand and use

 Easy to manage due to the rigidity of the model. Each phase has specific

deliverables and a review process

 Phases are clearly defined and completed one at a time

 Works well for smaller projects where requirements are very well understood

 Process and results are well documented

Disadvantages

Waterfall model do not allow revision if development is in the next stage. For e.g. if

an application is in the testing stage, it is very difficult to go back and change

something that was not implemented properly or a change in design is required. The

major disadvantages are:

 No working software is produced until late during the life cycle. So developer

and customer both need to keep patience

 It is not a good model for complex and object-oriented projects

 Not suitable for long and ongoing projects

 Not suitable for the projects where requirements are changing

20

 System integration is done at the very end, which doesn't allow identifying any

technological or business bottleneck or challenges early.

2.4 THE INCREMENT AL MODEL

Incremental model combines the elements of waterfall model in an iterative manner.

In the incremental model of software engineering, waterfall model is repeatedly

applied in each increment. The incremental model applies linear sequences in a

required pattern as calendar time passes. Each linear sequence produces an

increment in the work. Thus it delivers a series of releases called increments which

provide progressively more functionality for the client as each increment is delivered.

Figure-6 The Incremental Model

Incremental approach is iterative in nature. Model focuses on delivery of an

operational product with each increment.

Advantages

When incremental model is used, first increment is often a core product in which

basic requiremnts are fulfilled. Many supplementary features are delivered in next

21

increments. Incremental model is useful when staff is unavailable for a complete

implementation within a deadline. Further advantages of the model are:

 Developer can develop prioritized requirements first

 Initial product having basic requirements are delivered early

 Customers gets important functionality early which can be evaluated early

 Each release is a product increment, so that the customer will have a working

product at hand all the time

 Customer can provide feedback to each product increment, which helps to

plan next increment

 Changes in requirements can be easily accommodated

Disadvantages

To implement incremental model, the software problem must be divided into well-

defined increments at the planning stage. The disadvantages of the Incremental

model are:

 Requires effective planning of increments

 Requires efficient design to ensure inclusion of the required functionality and

provision for changes later

 Requires early definition of a complete and fully functional system to allow the

definition of increments

 Well-defined module interfaces are required, as some are developed long

before others are developed

2.5 THE RAD MODEL

The Rapid Application Development (RAD) model is actually a high speed

adaptation of waterfall model. Development cycle in RAD model is short. A

software project can be implemented using this model if the project can be broken

down into small modules wherein each module can be assigned independently to

separate teams. These modules can finally be combined to form the final product.

Development of each module involves the various basic steps as in waterfall model

i.e communication, planning, business modelling, data modelling, process

modelling, construction and testing and turnover. Another striking feature of this

model is a short time span i.e the time frame for delivery is generally 60-90 days.

22

RAD model distributes the analysis, design, build and test phases into a series of

short, iterative development cycles.

Business Modeling - The business model identifies flow of information and the

distribution of information between various business channels. A complete business

analysis is performed to find the vital information for business, how it can be

obtained, how and when is the information processed and what are the factors

driving successful flow of information.

Data Modeling - The information gathered in the Business Modeling phase is

reviewed and analyzed to form sets of data objects vital for the business. The

attributes of all data sets is identified and defined. The relation between these data

objects are established and defined in detail in relevance to the business model.

Process Modeling - The data object sets defined in the Data Modeling phase are

converted to establish the business information flow needed to achieve specific

business objectives as per the business model. The process model for any changes

or enhancements to the data object sets is defined in this phase. Process

descriptions for adding, deleting, retrieving or modifying a data object are given.

Figure-7RAD(Rapid Application Development) Model

23

Construction - The modules are built and coding is done by using automation tools

to convert process and data models into actual prototypes. Emphasis is given on

use of pre-existing software components.

Testing and Turnover - The overall testing time is reduced in the RAD model as

each module is independently tested during every iteration. However, the data flow

and the interfaces between all the components need to be thoroughly tested with

complete test coverage. Since most of the programming components have already

been tested, it reduces the risk of any major issues.

After turnover, customer feedback is taken to identify if more iteartion are required

or not. If a businness application is highly modular in nature and if its major

functions are to be implemented in a short time span, than RAD model is applicable

to it. Each major function can be developed by a separate RAD team and then

integrated to form a whole product.

Advantages

 Use of reusable components and automatic code generation tools helps to

reduce the cycle time of the project

 Continuous feedback from the customer is available from the beginning of the

project which helps in building high quality product

 Project development progress can be measured through the various stages

 It is easier to accommodate changing requirements due to the short iteration

time spans

Disadvantages

 This model requires sufficient developers to create necessary number of

teams

 Customer involvement is required throughout the life cycle

 If the product is not highly modular in nature, RAD model can not be applied

 The use of powerful and efficient tools requires highly skilled professionals

 RAD model is not appropriate for project with high technical risk

24

Check Your Progress 1

Identify which model will be more appropriate for following definitions.

1. The software organization has developed similar project in past.

2. Customer has defined a very strict deadline for the

project.

3. The project can be compartmentalized in 3 different compartments and there

is sufficient staff.

4. Customer is able to specify all his requirements from the

beginning.

5. Customer has defined stringent deadline but all functionalities are not required

that time.

6. Reusable components and project construction tools are to be used.

Check Your Progress2

For all the three process models, populate following table.

Process Model Strength Weakness Types of project

Waterfall Model

Incremental

Model

Rapid Application

Development

(RAD) model

2.6 LET US SUM UP

A process model is a general process specification which is useful in many projects.

To bring order and structure to software development, process models have been

25

applied. All of prescriptive process models perform almost same set of framework

activities: communication, planning, modelling, construction and deployment.

Waterfall model has linear sequential advancement but many projects do not

possess linear flow. When similar project has been devloped in the past or when

requirements are well defined and stable, waterfall model is most appropriate model.

Incremental model produces software in increments. This model is applicable for

project with stringent deadline. RAD model is appicable to large and highly modular

projects.

2.7 CHECK YOUR PROGRSS: POSSIBLE ANSWERS

Check Your Progress 1

Identify which model will be more appropriate for following definitions.

1. The Waterfall Model

2. The Increment Model

3. The Rapid Application Development Model(RAD)

4. The Waterfall Model

5. The Increment Model

6. The Rapid Application Development Model(RAD)

Check Your Progress 2

For all the three process models, populate following table.

Process

Model

Strength Weakness Types of project

Waterfall

Model

- Simple

- Easy to execute

- Best for small &

similar projects

- Well documented

- Requirements once

established do not

change

- Project completion time

is long

- No scope for user

- Small projects

- Well understood

problems

- Similar

project

successfully

implemented in

26

 feedback

- Changes in-between

the project are not

allowed

- Requires patients of

developer & customer

- Not good for technical

break through projects

past

- Automation of

existing manual

system

Incremental

Model

- Quick delivery at

regular interval

- Alllows for

customer

feedback

- Changes can be

accommodated

- Proper planning before

each increment is

required

- Frequent changes may

adversely affect system

and its architecture

- For businesses

where strict time

schedule is

followed

- When

requirements are

changing

Rapid

Application

Development

(RAD) model

- Very short

delivery cycle

- Use of reusable

components and

tools

- Changes can be

easily

accommodated

- Large number of

developers for many

teams are required

- Highly skilled

developers for

automation tools

- Full involvement of

customer

- Not suitable for high

technical risk projects

- For problems

which are highly

modular and less

time schedule

- When reusable

components are

used

27

Unit3: Evolutionary Process
Models

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Prototyping Model

3.4. Spiral Model

3.5. Concurrent Development Model

3.6. Specialized Process Models

3.7. Let Us Sum Up

3.8. Check your Progress: Possible Answers

3

28

3.1 LEARNING OBJECTIVE

The objective of this chapter is to introduce concept of evolutionary software

process. When you will read this chapter you will :

 Understand concept of evolutionary software process;

 Learn about various evolutionary process models;

 Gain knowledge about advantages and disadvantages of various process

models.

3.2 INTRODUCTION

Software evolves over a time period. Business requirements changes as project

development advances. These changes leads to major changes in already

developed project which leads to extension of time and efforts. There are many

software products for which time to market is very important. During development of

such project changes occur, than they may lose competitive edge. In such cases

instead of publishing the whole software product, a limited version is published. This

limited version may contain core product with basic functionality and remaining

functions may be published as system extension afterwards. In such situations,

software engineers need a process model that accommodates product which

evolves over time – the evolutionary process model. These models are iterative in

nature.

3.3 PROTOTYPING MODEL

Often customers are not sure about their requirements regarding the software. They

are unable to describe detailed input, process or output. On other hand developers

also are not able to understand requirements of customers or they are not sure

about certain algorithms. In such cases a prototyping model is best approach.

The software prototyping refers to developing a prototype of software application.

Such application displays the functionality of the product which is to be development,

but it do not actually have the exact logic and implementation of the original

software. Software prototyping enables developer to understand customer

requirements at an early stage of development. It helps get valuable feedback from

29

the customer and helps software designers and developers understand about what

exactly is expected from the product under development.

Communication

Figure-8 Prototyping Model

Process begins with communication. Developer and customer meet and identifies

very basic software requirements. Details of internal design and processes are

ignored at this stage.

Quick plan

A quick planning and designing is done based on customer requirements.

Building prototype

A prototype is built which implements customer requirements. This prototype

generally consist user interface which is visible to customer.

Customer feedback

Customer reviews the prototype and gives feedback. Feedback is used for further

enhancement of prototype. And the next iteration for building prototype begins.

Thus prototyping paradigm helps developer understand software requirements.

customer and developer both must understand that this is a working representation

of actual software. Thus after requirements are well understood, prototype must be

scrapped.

30

Advantage

 Customer gets involved in the product throughout the software development

 Customer get a better understanding of the system being developed as

working model of the system is exhibited

 Regular review leads to detect defects early leading to decrease in time and

cost

 User feedback is available during development leading to better solution

 Missing functionality is identified easily

Disadvantage

 Customer gets accustomed to working prototype. They are not aware about

compromises in quality of prototype. they ask to make prototype as actual

software with fixes.

 Developer makes technical compromises while developing a quick prototype.

after requirements are gathered, this prototype need to be scrapped. But

developed become comfortable with prototype, make some fixes and accept it

as actual software.

 The effort invested in building prototypes may be too much if it is not

monitored properly.

3.4 SPIRAL MODEL

Spiral model is an evolutionary mode. It is iterative like prototype model and have

systematic development like waterfall model. It was developed by Barry Boehm, a

renowned software engineer. Using this model, software is developed as it is

evolving. In the early stages, software prototype may be developed which is

converted to complete software during later stages. Spiral model is divided into a

sequence of framework activities. Each set of framework activities leads to one spiral

path. Movement is in clockwise direction. First circle around the spiral may result in

product specification development. Next one or more circle around spiral may result

in system requirement specifications. thus through many iterations progressively,

sophisticated software will be developed.

31

Figure-9 The Spiral Model

Communication – Process begins with communication. Business requirements are

gathered in the baseline spiral. As spiral moves forward, product matures. Than this

step will act as

Planning- This phase encompass estimation, scheduling and risk analysis. During

estimation, time, cost and efforts required to develop the project is calculated.

Scheduling is the process that decide time of deliverable products like scope of the

project, design etc. Risks are possible conditions and events that prevent

development team from its goals. There‘s a wide range of them, from trivial to fatal.

The primary task for the development team is to enumerate all the possible risks and

prioritize them according to importance.

Modelling – Modelling refers to production of the actual software product at every

spiral. during initial circle, when the product is just thought of, system specification is

created.

Construction- Initially a concept about software is built. Then in the subsequent

spirals with higher clarity on requirements and design details a working model of the

software called build is produced with a version number. These builds are sent to the

customer for feedback.

Deployment- This phase allows evaluating the output of the project by the customer

before the project continues to the next spiral. Customer give their feedback. Based

on the customer evaluation, the software development process enters the next

iteration and subsequently follows the linear approach to implement the feedback

32

suggested by the customer. The process of iterations along the spiral continues

throughout the life of the software.

The spiral model is realistic approach for developing complex and large-scale

software. Spiral model is applicable to projects with high risks, and breakthrough

technology is to be used.

Advantages

 Requirement Changes can be accommodated

 Spiral model creates prototypes, making easier for customer and developer

to understand implementation requirements.

 Customers get the feel of software from the beginning of life cycle

 Software modules having high risk can be developed earlier which helps in

better risk management

Disadvantages

 Implementation and management of spiral model requires expertise

 One cannot predict duration for project completion during early stages

 Not suitable for small or low risk projects and could be expensive for small

projects

 Requires excessive documentation

3.5 CONCURRENT DEVELOPMENT MODEL

During all the process models described previously, it is assumed that software

development will be in a single stage at a given time. But when more than one teams

are involved, software may be in different stages concurrently. Process will be

divided into activities and activities into tasks. Each team may perform different

activity or different task at a given time. For example, modelling activity of a project is

divided into number f tasks as shown in the figure.

33

Figure-10 One Element of Concurrent Process Model

Thus all activities of process model exists concurrently but they may be in different

states. For example in a project while communication activity was carried, modelling

activity was in none stage. .when communication activity is over, modelling activity

moves in under development state. At this stage if there is a change in customer

requirements, modelling activity will move to awaiting changes state from under

development state. Each software engineering activity or tasks are defined through a

series of events. these events will trigger transition from one state to another state.

Advantages

 Concurrent process model is applicable to all types of software development

processes

 It provides an accurate picture of the current state of a project

 For each activity or task, a network of activities are defined. Each task may

exist simultaneously with other tasks

Disadvantage

 It needs better communication between the team members. This may not be

achieved all the time

 It requires to remember the status of the different activities

34

Check Your Progress 1

Identify which model will be more appropriate for following definitions.

1. Customer is unable to specify requirements for the software.

2. A new software application is to be used for developing the product.

3. These is a high business risk associated with the project.

4. There are multiple teams working on different tasks.

5. Customer feedback is very important for the development.

3.6 SPECIALIZED PROCESS MODELS

Specialized process models are used for specific software.

 COMPONENT-BASED DEVELOPMENT

Large and complex software development requires management of reusable

components and can be selected from component repository and assembled to

obtain a working application. Development of components and their assembly needs

different approach from that of traditional software. Component based development

is mainly focused on the concept of reusability. It provides a cost effective, fast and

modular approach for developing complex software.

What is a component?

A component is a software object, intended to interact with other components,

encapsulating certain functionality or a set of functionalities. It has an obviously

defined interface and conforms to a recommended behavior common to all

components within an architecture. It contains following characteristics.

 Independent− Components are designed to have minimal dependencies on

other components.

 Reusability − Components are designed to be reused in various applications

 Replaceable – One components may be substituted with other similar

component

 Not context specific− Components are designed to operate in different

applications and contexts

 Extensible − A component can be extended from existing components

35

Component-based development focuses on the decomposition of the design into

individual functional or logical components. Each function/component must have

well-defined communication interfaces. Reusable components are incorporated in

the software development.

Advantage

 Due to readily available components are used, efforts for developing new

component is reduced. This saves time.

 As components are already developed and tested, they do not incur money

for development, reducing project cost.

 Reusable components are not interdependent with other components. So they

can be easily changed with other similar components.

Disadvantage

 When reusable components are not fully experienced than incorporating then

in software requires expertise, time & effort.

 Similarly sometimes changes are required before incorporating reusable

component in the software. If this changes are minor than it will not incur more

time and effort. But is these changes are large and complex, it incurs time and

efforts. It may cost as much or more than developing a new component.

Check Your Progress 2

For all the four process models, populate following table.

Process Model Strength Weakness Types of project

Prototyping Model

Spiral Model

Concurrent Development model

Component-based Model

36

3.7 LET US SUM UP

Many software projects are iterative nature and their requirement may change during

project progression. Evolutionary process models accommodate these requirements

in software development. Prototyping and spiral model produce work products in

increments. Both the models are applicable to software projects of which

requirements may change.

Concurrent development model is useful when multiple teams are working on a

single project. It allows activities to remain in different states concurrently.

Component based model stresses on reuse of components.

3.8 CHECK YOUR PROGRSS: POSSIBLE ANSWERS

Check Your Progress 1

Identify which model will be more appropriate for following definitions.

1. Prototyping Model

2. Spiral Model

3. Spiral Model

4. Concurrent Development Model

5. Prototyping and Spiral Model

6. The Increment Model

7. The Rapid Application Development Model(RAD)

Check Your Progress 2

For all the three process models, populate following table.

Process Model Strength Weakness Types of project

Prototyping

Model

- Helps in

requirement

establishment

- Full customer

involvement

- Reduction in risk

- Prototype

overheads

- May increase cost

- Use of prototype

as full functional

prototype

- For first time users

- When requirements

are uncertain

- When User Interface

is important

37

Spiral Model - Planning against

possible risk,

reduction in risk

- Allows changes

at any stage

- Allows user

feedback

- Priority to

requiremen

ts

- Customer feels

the software

being built

- If not

implemented

properly, increase

in time, cost and

efforts

- Planning

overhead

- Project

completion time

not predictable

- Excessive

documentation

- When requirements

are uncertain

- High risk projects

- Technical

breakthrough

projects

-

Concurrent

Development

model

- Accurate picture

of project

- Fast

development due

to multiple teams

working on

project

- Applicable to all

software

project

- More staff

requirements

- Heavy

communication

between teams

- Heavy paperwork

- Al types of project

- Projects where time

is of essence

Component-

based Model

- Less

development

time as reusable

components are

used

- Less efforts

- Reduced cost

- Components are

changeable

- If using

inexperienced

components,

leads to increase

in time, cost &

efforts

- Requires

expertise with

reusable

components

- For projects where

reusable

components are to

be used

38

Unit 4: Agile Process Model
 4

Unit Structure

4.1. Learning Objectives

4.2. Introduction

4.3. Agile process models

4.4. Let Us Sum Up

4.5. Check your Progress: Possible Answers

39

4.1 LEARNING OBJECTIVE

The objective of this chapter is to introduce concept of Agile software process. When

you will read this chapter you will:

 Understand concept of agility;

 Learn about principles of agile development;

 Gain knowledge about various agile process models.

4.2 INTRODUCTION

Agile process models adopt principle of agility. Agility is the ability to create and

respond to change. Agile process model adopts iterative and incremental approach.

Process model employs all the stages of waterfall model. To build the project,

Iterative approach is taken and working software build is delivered after each

iteration. Each build is incremental in terms of features; the final build holds all the

features required by the customer. Its main focus remains on process adaptability to

ever changing customer requirements. Customer satisfaction is achieved by rapid

delivery of working software product.

Figure-11 Agile Process

40

Following are the principles of agile process :

 Communication and collaboration − There is a constant need for

interactions between team members. This will disseminate information

regarding change in the team.

 Responding to change − Agile Development is focused on quick responses

to change and continuous development.

 Self-organizing - In Agile development, self-organization and motivation of

team members are important. Team also organizes process to accommodate

requirements. Team organizes work schedule to deliver working product on

time.

 Customer collaboration − Customer Interaction is the backbone of this Agile

methodology, and open communication with minimum documentation are the

typical features of Agile development environment.

 Working software − Working software is considered the best means of

communication with the customers to understand their requirements, instead

of just depending on documentation. Team works to deliver working software

built at frequent interval.

 Customer satisfaction - With early and continuous working software delivery

and with accommodating ever changing customer requirements, customer

satisfaction are achieved.

 Progress - progress is measured in terms of working software.

 Simplicity - Implementation of simple but best design and architecture.

Agile process make use of an adaptive approach. Planning is done based on what

functions and features are to be implemented. There is feature driven development

and the team adapts to the changing product requirements dynamically. The product

is tested very frequently, through the release iterations, minimizing the risk of any

major failures in future. Agile process model is being widely accepted throughout

software community.

Advantage

 Agile development is a realistic approach for software development

 Promotes teamwork and cross training

 Functionality can be developed rapidly and demonstrated

41

 Delivers early partial working solutions

 Accommodates changes at any stage of development

 Decrease in time as vary less planning is required

Disadvantage

 Not suitable for highly complex software

 Depends heavily upon customer interaction, so if customer is not clear about

requirements than development may take a wrong direction

 Very less documentation may lead to confusion

4.3 AGILE PROCESS MODELS

There are number of different process models for agile development.

4.3.1 EXTREME PROGRAMMING

Extreme programming is a lightweight and flexible model for agile process. It is

employed to implement software projects being developed by small teams. Extreme

programming is based on five rules

Communication – There is a constant need for communication between fellow

developers and with customers.

Simplicity – Design and implementation are simple and to the point

Feedback – For each release customer feedback is taken. This helps in improving

next release and boost customer satisfaction.

Respect – Team members have continuous communication and collaboration which

improve respect among themselves.

Courage – Extreme programming require courage to accept change at any stage of

development and commit.

Extreme programming uses object-oriented approach. It has following stages for

software development:

Planning : A story is created describing required features and functions. These

functions are prioritized based on their business value.

42

Design: A good quality design is important to develop a good quality software.

Extreme programming follows simplicity. It uses no-notations and very few work

product are produced.

Incremental development: Incremental development releases software in

increments every few days. Customer feedback on the release are included in next

iteration. Thus new increment s released with improvised requirements.

Testing: Testing helps to remove errors and improves software‘s reliability. Each

increment are tested thoroughly. Release are again tested by customer known as

acceptance test.

Advantage

Figure-12 Extreme Process

 It ensures timely delivery through achievable development cycle

 Continuous customer involvement

 Extensive testing ensures less defects are released

 Changes are accommodated at any stage of development

Disadvantage

 It requires constant involvement of customer

 Less documentation may lead to problem at the time of staff turnover

43

4.3.2 ADAPTIVE SOFTWARE DEVELOPMENT

Adaptive software development is proposed by Jim Highsmith in 2000. It is a

technique to build complex software. It applies practices of RAD model. Model

focuses on communication and team self-organization. It is a cyclic model having

three stages:

Speculate: It represents adaptive cycle planning. This stage initiates project by

gathering information from customer which includes primary requirements,

constraints and mission statement. A rough planning is done and iteration begins.

Collaborate: Communication and collaboration is proportional to size and

complexity of the project. To handle complex and large volume of information

collaboration is necessary. To solve complex problem, knowledge in diverse fields

are required. This leads to team collaboration. Thus collaborate is the ability to work

together to produce results, share knowledge or make decisions.

Figure-13 Adaptive Software Development Cycle

Learn: As the components are being developed, team focuses on enhancement of

their knowledge. Learning helps software developers to improve their understanding.

Learning is carried out through:

1. Focus groups : consists of customers and end users. They provide feedback

on the increments. This indicates if customer requirements are being fulfilled

or not.

44

2. Technical reviews: Reviews are performed after each iteration. Team

members review software components so as to improve its quality.

3. Postmortem: Team must review and reflect upon its performance and

process. Team must identify changes in required direction.

Advantage

 This process focuses on users which leads to product being more user-centric

 Thrives for on-time delivery

 More communication and transparency between developer and customer

Disadvantage

 Requires extensive customer involvement which is sometimes difficult to

facilitate

 Extensive testing leads to cost increase

4.3.3 DYNAMIC SYSTEMS DEVELOPMENT METHOD

An agile development approach, Dynamic System Development Method (DSDM)

provides a framework for building and maintaining time-constrained systems. It

combines best practices of prototyping, incremental and Rapid Application

Development (RAD) approach. DSDM life cycle consists of 5 stages:

Feasibility Study: This stage identifies business requirements for the software being

developed and business constraints imposed on it. Based on it, viability of the

product is assessed.

Business study : Identifies functional and information requirements for building the

software. Creates basic architecture of the application

Functional model iteration : A number of prototypes are produced. These

prototypes demonstrate fulfillment of customer requirements through implementation

of functionality. Through user feedback, additional requirements are gathered.

Design and Build Iteration: After prototyping stage, all the functional requirements

will be gathered. In this stage, software is designed and build anew.

Implementation: Software increments are tested in operation environment. Project

falls into next iteration.

45

Advantage

 End-user are more involved, leading to better understanding and

implementation of functions.

 Software is developed in increments. Through collecting customer feedback, it

can be improvised in next iteration

 Budget and schedule remains in check

Disadvantage

 Needs expertise to implement the model

 Not applicable for small budget projects

4.3.4 SCRUM

Scrum is an Agile Development Process Model, developed by Jeff Sutherland and

team in 1990. It works on following principles:

 Scrum relies on a small and self-organizing team. The scrum team is self-

organizing in a manner that there is no overall team leader. Issues and

problem are solved by team as a whole.

 Team is cross functional. Every developer must take a feature from idea up to

its implementation.

 Process adopts to changes in technical and business requirements

 Software is produced in increments. These increments are reviewed and

adjusted.

 Low coupling between work products and developers

 Constant testing and documentation is performed throughout the project.

 Project can be declared complete at any given time

46

Figure-14Scrum Process Model

Scrum process is applied through framework activities: Requirements, Analysis,

Design, Evolution and delivery. Within an activity, a process pattern is applied to

each work tasks known as Sprint. Work conducted during Sprint is adapted for the

problem at the hand and also modifies during work tasks. Scrum stresses on use of

proven and effective software patterns. These patterns can accommodate tight

schedules and changes in requirements. Following activities are carried out during

the process:

Backlog – A priority list containing important business requirements to be developed

are created. This list can be updated anytime by project managers.

Sprint – Sprint is project team‘s to-do list. The requirements from backlog that need

to be finished first are being developed. During sprint, the backlog items which are

being developed are frozen. No changes are allowed in them. This allows team

members to work in a stable environment.

Scrum meetings – They are of short duration and held daily. Team members are

asked 3 key questions: (1) what did you do since last meeting? (2) What obstacles

you faced? (3) What do you plan to complete before next meeting? Scrum meeting

helps uncover potential problems at early stage. This meeting leads to dissemination

of information in team members. Scrum Master is the team leader who leads the

meeting and evaluates responses of all team members.

47

Demos – They are software increments delivered to customers. Customers evaluate

them and provide feedback. Demo may not contain full functionality.

Advantage

 Projects are delivered within bound of time and money

 Large and complex projects are divided into smaller components and

achieved

 Each release are evaluated by customers. They give feedback on it

 Feedback are adopted in next release. This leads to user requirement

satisfaction

 During scrum meeting each member has chance to put their work forward

Disadvantage

 Planning is difficult for this model

 If team members are not committed, chances of project failure is high

 Needs experienced developers to implement scrum model

 Due to less wait on testing, quality may be questionable

 Not to be used for large projects

4.3.5 CRYSTAL

Crystal model was developed by Alistair Cockburn and Jim Highsmith. It is a

lightweight and adaptive approach for agile software development. Crystal is a set of

agile methods namely : Crystal clear, Crystal orange, Crystal yellow and many more.

Each method is applicable to certain project and environment. The characteristics

addressed by crystal methods are team size, criticality of project etc. models of

Crystal family thrives on flexibility. Development process framework are followed for

the development. Development team selects base method at the beginning of the

project. Developers are allowed to use techniques borrowed from other

methodologies. To monitor and tune he development, reflection workshops are

organized.

48

Advantages

 It delivers software in increments which is reviewed by customer and provided

with feedback. Feedback is used to improve next increment.

 It is a flexible process

Disadvantage

 Not suitable for high risk projects

 High degree of communication in team are required

4.3.6 FEATURE DRIVEN DEVELOPMENT

This model was conceived by Peter Coad and team. It is applicable for object

oriented software engineering. This model was extended by Stephen Palmer and

John Felsing. This model follows practical approach to fulfill customer requirements.

it is a client centric model. Work tasks are produced in a short time.

The feature is a small portion of customer requirements for example ― calculate total

sales‖. A feature is expressed in the form <action><result><object>. Where

<action> can be Calculating, Making etc. <object> can be a person or thing such as

sales, product etc. <action> is applied on <object> to obtain <result>.

The Feature Driven Development model has 5 framework activities. The first activity

leads to Develop An Overall Model. Initial result of this activity will be an object

model. During second activity, A Features List are built. These lists are grouped

according to their subject areas. Next step performs planning by feature. This activity

identifies of class owners and feature set owners. Fourth and fifth activities are about

detailed modeling, programming, testing, and packaging of the system.

49

Advantages

Figure-15 Feature Driven development Process

 Features are small portion of a functionality, customers easily describe and

evaluate them

 A hierarchical function related grouping of the features are possible

 It needs less time to develop a feature making possible to release features in

a short time

 It is easy to design and develop features

 Project planning and scheduling is easy

 Supports multiple teams working in parallel

Disadvantage

 Not a good method for small projects

 Less documentation may lead to confusion

4.3.7 AGILE MODELING

For developing large and complex systems, Agile model is applied. Agile modeling is

also a combination of incremental and iterative process model. Customer satisfaction

and process adaptability are its main focus. Agile method divides software into small

manageable tasks. Each tasks are divided among team members. Quality of the

50

software being built is monitored sharply. Following are the Agile modelling

manifesto:

Purposeful model : Developer shall have clear goal for using the model for example

communication with customer regarding constraints on software. Notation and level

of details depend on model to be used.

Use alternatives : there are many models and various notations for designing. Each

model identifies different feature of software system. Developer must identify the

model which will describe features of software to be developed the best.

Less isbeautiful : Do not mix multiple models for different activities. Apply only

those model that have long-term value for the software.

Trade-off: Trade-off between content and its representation. Content are always

more important than its presentation. Apply those model that can convey information

to users.

Knowledge: Developers must have knowledge about model and tools they are

using. Every model and tool has its own strength and weakness.

Adaptation: Model being applied must adapted according to software being

developed and the team working on it.

Figure-16Agile Model

51

Advantages

 It is a realistic model for software development

 Quick development and fast release

 Suitable for any type of requirements

 Supports team work

 Easy to manage

 Gives flexibility to developers

Disadvantage

 Very less planning leads to schedule overrun, may effect maintainability

 Not suitable for projects having complex dependencies between its

components

 Less documentation leads to confusion during staff turnover

Check Your Progress 1

Fill in the blanks with suitable option.

1. Agile development stresses on

a. Interaction

b. working software

c. customer involvement

d. all the three

2. is not an agile model.

a. Scrum

b. XP

c. SAP

d. ASD

3. How many phases are there in Scrum?

a. None

b. two

c. three

d. four

4. Adaptive software development consists of

 framework activities.

a. Analysis, design and coding

b. Requirements, planning and coding

52

c. Speculate, collaborate and learn

d. Object model and feature model

5. Define Agility:

a. quick development c. Customer collaboration

b. response to change d. Iterative process

4.4 LET US SUM UP

Agile models stresses on: Ready to accommodate change at any stage of

development, rapid delivery of software increments, self-organizing teams, and

heavy communication and collaboration between team members as well as with

customer. In this chapter, models which support agile development principal are

discussed.

Extreme programming is widely used model.it follows common framework activities

of planning, design, coding and testing. It delivers features and functionality of

software in increments at a frequent rate. Adaptive Software Development

emphasizes on communication and collaboration between team members and also

with customer. Process is organized in three activities – speculate, collaborate and

learn. This model is iterative and adaptive in nature. Dynamic system development

model(DSDM) develops software using 3 iterative cycles – functional model iteration,

design and build iteration and implementation iteration. Each increment of work

product sufficient implementation so as to move forward in next iteration.

Scrum make use of process patterns that are proven effective for time-constrained

projects. Each process have their defined set of tasks which need to be adapted to

software. Crystal is a family of agile process models. it is iterative and can be applied

to projects with different sizes and complexities. Feature driven development model

focuses on project team and features to be developed. Functions that are specified

by customers are implemented in a short time. Agile model stresses on tuning of

process model according to software complexity and size.

53

4.5 CHECK YOUR PROGRSS: POSSIBLE ANSWERS

Check Your Progress 1

Fill in the blanks with suitable option.

1. d(all the three)

2. c(SAP)

3. c(three)

4. c(speculate, collaborate and learn)

5. b(response to change)

54

Block-2

Software Measurement and

Quality Assurance

55

Unit 1: Software Measurement
and Estimation

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Key attributes of Software Measures

1.4. Importance of Measurement

1.5. Software Measurement Challenges

1.6. Software Size Measures

1.7. FP Calculation

1.8. Software Cost Estimation

1.9. Let Us Sum Up

1.10. Check Your Progress: Possible Answers

1

56

1.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand:

 Key attributes of software measures

 Importance of measurements in estimating and monitoring projects

 Challenges to be addressed while measuring Software

 Two commonly used size Measures – Lines of Code (LOC) and Function

Points (FP) along with advantages and disadvantages of each

 Process and guidelines to compute Function Points.

 Overview of effort and cost estimation models involving various parameters

considered.

1.2 INTRODUCTION

In real life world, most physical objects or materials are measured using standard

and industry acceptable unit of measures (UOM). So, hard materials are measured

for their height, length and width attributes with feet / inches / meters etc,for weight

attribute with kgs / gms etc.Similarly, Liquid materials are measured for their volume

attribute with litres / millilitres etc.Measure provides quantitative indication of amount,

dimension, capacity or size of some attribute of a product or a process. Because of

this, it is easy to compare quality and cost of two materials of the same type and

size. We as a customer cannot take decision for buying and product if we cannot

compare.

Like we measure various attributes of physical product, we need to measure

attributes of software also. It is particularly important in the era of outsourcing and

offshorization where software projects are expected to be delivered by software

vendors to their customers. Vendors need to provide timeline, effort, cost along with

functionalities and features in quantifiable terms so that customers can evaluate,

compare and track as per commitment given.

For software projects, the approach taken is as given below.

1. Size is estimated for the requirements of the project.

57

2. Then effort is estimated for the give size. This is used for project planning and

scheduling

3. Then Cost is estimated based on effort.

Refer the diagram below to understand how the size, effort and cost estimations are

done with the help of past experience and used for planning and scheduling of the

project.

We will discuss in details importance, challenges and methods of software measures

in this unit.

1.3 KEY ATTRIBUTES OF SOFTWARE MEASURES

There are many attributes we need to measure throughout Software Development

Life Cycle (SDLC). We will discuss few important attributes in this unit.

Size:

Size or quantum of the software product is one of the most important attribute to be

measured. Note that there are two categories of measures – Input oriented and

output oriented. If one measures the size simply by effort by saying that this product

is worth say 100 person days of effort then it is known as input oriented measure

because effort is the input you provide to develop the product and not the output.

Different people/teams may take different amount of effort for the same project. For

example one team may take 100 person days while the other team may take say 80

58

person days for the same software product to be developed. The output oriented

measure on the hand will be fixed irrespective of amount of effort provided and

hence more meaningful and comparable. We will discuss two ways in which the size

is measured namely Lines of Code (LOC) and Function Points (FP) in subsequent

section.

Productivity:

Once the size is clear, project manager would need to measure, amount of effort it

will take to construct the product. This can be achieved by measuring how much time

on an average is required to construct 1 unit of size. Something similar to number of

square feet wall can be painted in one hour or number of kilometers can be travelled

in one hour. This is known as Productivity. Productivity can be in terms of number

of days (for large activities) or in terms of number of hours. We will consider in terms

of number of hour for our discussion. One can quickly derive productivity per day by

multiplying number of working hours to productivity per hour.

Complexity:

Simple size calculation is not enough. For example, in case of commuting – driving

on some very smooth roads may be simple but on some other patchy/hilly roads may

be difficult and time consuming, even though both roads may be of same distance.

Similar is the challenge in case of software. Various internal programs attributes

such as modularity, functional independence, interfaces, repeatability, reusability etc

can increase complexity of the software program and may require higher effort and

time. Hence complexity should also be measured and factored in calculating size or

productivity.

Effort:

One can calculate effort based on size and productivity.

Effort (Hours required) = Size / Productivity. So, if the size of the product is say 1200

units and if the resources can produce 2 units per hour we will require 1200/2 = 600

hours.

Cost:

Since software product construction requires time of human resources – effort and

cost has direct relationship.

59

So primarily cost of human resource per hour is considered as rate and is used to

calculate cost.

Cost = Effort * Rate (per hour)

Cost of tools, training, communication, travel and many other relevant costs and

other overhead costs may also be required and added. We will discuss at a later

stage that it is not as straight forward to come up with accurate cost for software

product due to various parameters, some researchers have developed cost

estimation models. We will get an overview of those models toward the end of this

unit.

Time

Primary objective of measuring time is to be able to plan by when the project will be

completed or by when the product will be delivered. So initially, time is measured in

terms of number of working days and then converted in to calendar days by factoring

weekly offs and holidays falling during the period.

For our project we estimated that it will require 600 hours which means 600 / 8 = 75

work days (assuming 8 working hours per day). Now, if three resources are going to

work on the project, it would require 25 days and if we consider 5 working days in a

week, we will need 5 calendar weeks to complete the project.

Quality

Delivering a product in time with estimated cost is not enough. The product needs to

be of high quality. Poor quality product, even if cheap (requiring less effort) could

actually have very high negative impact for the user. So, there is a need to measure

quality of the product also. Number of issues/errors found in the product is one

simple but important measure of quality for any product including software product.

Out of the two products of the same size, if one product contains 15 and other

product contains 3 issues, the second product is better. Identifying and fixing defects

takes time, effort & cost and hence predicting number of defect in a project can help

in planning and tracking project well. The defects can be predicted based on past

experience (past projects). It depends on average number of defects found per size

unit in the previous projects.

60

Many functional and non-functional aspects to be considered while measuring quality

of the product. We will see various quality aspects and approaches for assuring and

controlling good quality in unit 4.

Processes

We cannot deliver required size of product fulfilling all the requirements with high

quality in time, unless we follow various processes. We should actually also keep

refining processes and techniques so that we not only meet but exceed

expectations. Measuring effectiveness of processes hence becomes important. So, it

is required that organizations continuously measure processes, replace with new

processes or refine the process to bring in continuous improvement. At a minimum,

the process should ensure that the issues / damages are reduced as compared to

past projects. For example we need to modify our self-review process so that

percentage of defects identified during inspection increases as compared to past

percentage.

Check your Progress 1

1) is one of the most important aspects of software measures

2) Productivity = Size / Time True / False?

3) Why Complexity is important for software measure?

1.4 IMPORTANCE OF MEASUREMENT

Measurements are important because it helps in

1. Taking decisions. For example, if someone wants to buy say rice, he/she

can compare price of rice per kg from two different vendors and decide to

buy from the vendor who is selling at a lesser price. For the time being we

are also assuming that both are of the same quality. Similarly, if there are

two vendors providing software development services, the customer can

decide based on estimated time, cost and quality of the software committed

by both the vendors. The decision may be taken based on many other

parameters but we consider main product related parameters for the time

being.

61

2. Planning. For example, if someone needs to travel from Gandhinagar to

Surat by car, he/she will be able to decide how much time it will take to

travel based on distance and average speed of vehicle. Once it is clear that

it will take say 4 hours, one can plan when to start. Similarly, once the size,

effort and timelines are known, one can plan start and end dates of the

project, resources required for the project and prepare nearly accurate

schedule.

3. Tracking. For example, a person plans to start at 7 AM from Gandhinagar

so that he can reach Surat by 11 AM. One can also estimate by when

he/she will reach Nadiad, Vadodara, Bharuch and can check whether

he/she could really reach to those places as expected or not. If he has

reached half an hour late to Vadodara then he/she can decide what course

of action he/she should take to cover up or if that is not possible, convey

possible delay to the concerned people. Similarly, once a detailed scheduled

with various milestones of the software development project is prepared,

he/she can check at each milestone whether project will be completed on

time or not.

Hence software projects should be measured so that one can arrive at costs, plan

timelines, track progress and take necessary actions.

Recollect your experience of doing small programming assignment you must have

done during your course. You would have initially assumed that a particular program

can be developed in say 2-3 days but you must have ended up spending 5-6 days to

really complete it. You can realize how difficult it is to estimate full-fledged

application and provide some high level commitment to the customer, if it is difficult

to accurately estimate a small program.

So, one can be drastically wrong if estimation is done just based on gut feeling, and

end up in either much higher estimate than what the customer is expecting and loose

the contract or may be much less than what it would actually take and end up in loss.

Not only that but it will become extremely difficult to plan, track and can impact

negatively on reputation.

Measures hence should be as much accurate as possible.

62

Check your Progress 2

1) How measures are useful in tracking progress for software development?

2) Program effort can be estimated based on gut feeling. True / false?

1.5 SOFTWARE MEASUREMENT CHALLENGES

We discussed in previous section that accurately measuring various attributes of

software is very important. However it is not as simple as measuring painting work or

travel duration. There are many aspects and challenges to be considered.

- When we are developing software, we are not just transforming the physical

object from current state to other state like from unpainted wall to painted wall

or we are not doing any activity like traveling on the existing road where

measure in kilometres is available but we are building something totally new

which does not exist at all and there is no measure currently available

- Software is providing some functionality to the user and same functionality

can be provided by different approaches using different technologies and

different logic. In most cases user may not be worried about those technical

aspects. They may simply want best quality software at cheapest price as

early as possible. The complexity involved and effort required for same

functionality may be different for different technologies and approaches.

- Many researches have tried but have not been able to develop

comprehensive measure of software complexity. So, one need to consider

some parameters proposed subjectively due to which accuracy may not be

achieved

- Even after the software product is measured, there is no simple measure

which says how much exactly is delivered.

- Many environmental factors can also impact the work.

Though there are challenges, we need to try to measure output (what is delivered or

going to be delivered) rather than input (effort). Advantage of measuring output is

that, we can show improvement by reducing input (effort) but still delivering same

output.

63

It can motivate people to come up with better solutions, improved productivity so that

same output can be delivered in lesser input.

Check your Progress 3

1) It is very easy to accurately measure size and cost of the software product.

True / False?

2) End user / customer is not much worried in which technology the software

product is developed. True / False

3) Software should be measured in terms of input required rather than output.

True / False?

1.6 SOFTWARE SIZE MEASURES

We will discuss two commonly used measures for measuring size of the software

product.

1.6.1 LINES OF CODE (LOC)

LOC is measured in terms of number of lines written in a source code excluding

comments and blank lines. It is also referred as SLOC (Source Lines of Code) as

source code (and not the binary code generated after compilation) is considered.

There are many languages where executable statements can be split into more than

one line or many executable statements can be accommodated in single line. So,

only logical lines of code are considered where one measures number of executable

statements for being more precise and consistent. Hence, for C like programming

languages, it will be number of statements terminating with semicolon (;). Since at

application level, there may be thousands and thousands lines in an application,

term KLOC is generally used where K represents 1000. So if a program contains

5500 lines, the size is referred as 5.5 KLOC in short.

Every line of code is a work and requires effort. Even when some defects to be fixed,

we analyse every line of relevant portion of the code, and find that a specific

line/statement may not be correct. So, we may spend more time on some lines and

less time on many other lines.

64

Though LOC can be quickly calculated once the code is ready, it is very difficult to

accurately measure LOC in advance. Hence for estimation purpose, three values for

each component size is calculated

a) Optimistic size (Sopt)

b) Most likely size (Sm)

c) Pessimistic (Spess)

And expected size S is calculated as (Sopt + 4Sm + Spess) / 6

So for a given component, if Optimistic size is 1700 LOC, Most Likely Size is 2200

and Pessimistic size is 2500 then then the estimated size is considered to be

(1700 + 4*2200 + 2500) / 6 = 2167

Advantages:

1) Main advantage of this method is that it is very simple to calculate once the

code is ready. We can even use some simple tools to calculate it.

2) Some popular cost estimation methods are based on LOC and they show

close agreement between estimated and actual size.

3) It is considered to be ideal for procedural languages.

4) Industry standards for different languages are available to start with and

subsequently past experience within the same organization can be

considered for estimating LOC in advance.

Disadvantages/ Limitations:

There are issues or limitations with this method as described below

1) Different programmers may achieve same functionality using different

approaches and hence number of lines required by each programmer may be

different even if both have to deliver same functionality.

2) Estimated size is required in advance so that planning and tracking can be

done but estimating accurate LOC of new project is very difficult. So, one may

initially estimate 100 LOC for a specific functionality but it may actually require

70 lines or 120 lines. Project manager can use past experience data for

65

similar projects but it very rarely happens that two projects are similar and

even if they are similar, many different aspects including working of

programmers may result in different size

3) This measure indirectly conveys that higher number of lines means higher

amount of work and hence better. This in reality is not true. More efficient

code with less number of lines can be written with reusability, modularity and

efficient logic. So, it could hence impact negatively by demotivating

programmers to write more efficient, modular code.

4) Size in LOC may not be easily accepted by Users if they do not have detailed

technical knowledge of specific programming language.

5) Same functionality may require different number of lines if coded in different

languages. Hence it is language dependent. Because of this, cross language

comparison is also difficult.

6) The entire software development project involves many activities covering

Requirement understanding, Design, Testing, Documentation and

Management apart from coding. These activities generally take lot of effort (It

could be even more than coding). So, considering only coding output as LOC

does not help in accurately measuring overall project.

1.6.2 FUNCTION POINTS

Function (FP) analysis was first developed by Allan J. Albrecht in the 1970s.

Function Point Analysis quantifies the functions contained within software in terms,

which are meaningful to the software users. It expresses the amount of business

functionality the information system provides to the user. It focuses on functional

size. It is not dependent on the programing language and the approach taken to

develop the code (code agnostic) and hence more consistent. It does not change

from developer to developer and language to language and hence can be applied

across wide range of development environment and can be used at any stages from

early requirement definition to full operation use.

Each of the business functions is a numeric index according to its type and

complexity based on standard set of basic criteria. All the numeric indices are then

added up to give initial measure of size which is then normalized by incorporating

66

various factors relating to overall software. This final number is called the Function

Point index and represents the size and complexity of the software product. We will

discuss actual calculation approach in detail in the next section.

Advantages

Since it measures output or the solution delivered, it provides following benefits

1) It can be measured at any point in time – even at the time of Function

specification

2) It is independent of technology, programming languages etc. and hence

comparison of two projects of same nature can be done even if both are

developed in different technologies or programming languages

3) It is possible to measure

o Development function point that includes prototype and temporary

solutions for planning and tracking purpose

o Application function point that excludes prototype and temporary

solution and

o Enhancement function points for the new functionalities added to the

system.

4) It is possible to attempt improvements in the productivity and cost without

impacting size. So, one can aim to develop programs with less number of

lines, high reusability etc. In fact, programmers can be rewarded for

developing efficient code as same output is delivered at lower effort/cost. So,

it motivates team to come up with such improvements.

5) Industry standard productivities are available for use as a starting point.

Subsequently, organizations can collect the data for the project and use them

for future projects.

6) Customer can easily check whether the output delivered is really as expected

or not by comparing initial committed size with actually delivered size.

7) Development team can use various tools or process improvement approaches

so that the productivity can be increased. So, it becomes easy to evaluate if

those tools and approaches have really impacted on productivity

improvements or not because the size does not change during development.

67

8) It is possible to measure performance trends across periods of time at an

organization level. For example, organization can expect that if 1000 FP

required X effort 6 months back, it should now take less than X effort for some

other project of 1000 FP.

Disadvantages/ Limitations

1) Method is based on subjective rather than objective data

2) It has no direct physical meaning. You will see in next section, how the

number is arrived and realize that it cannot be directly related as in case of

any other physical objects.

Check your Progress 4

1) are excluded while calculating LOC.

2) While estimating size, Optimistic, Pessimistic and sizes are

considered.

3) Provide 3 main advantages of FP.

1.7 FP CALCULATION

We have already discussed what we mean by Function Points in previous section.

Let us now understand how exactly function points are calculated.

Following are the steps followed for calculating FP

1) All functional requirements (which are mapped to end user business function)

are categorised in to 2 data functionalities and 3 transaction functionalities

(also known as elementary processes).

2) Complexity levels are then assigned to all functionalities based on guidelines

provided for each – data functions and elementary processes.

3) Calculate unadjusted function points for the entire product by adding

individual functionality level FP after applying complexity weightages.

4) Calculate Value Adjustment Factor based on Degree Of Influence of 14

General System Characteristics

5) Calculate final Adjusted Functions Point for the entire software product.

68

Let us understand all these steps in detail.

1) Identify and categorize functionalities. Functionalities are categorised in

two main categories – Data and Transaction (Elementary Processes)

A) Data Functionalities

Classify each data function in one of the following two

i. Internal Logical Files (ILF): User identifiable group of data,

logically related and maintained within the boundary of the

application through one or more elementary process

ii. External Interface Files (EIF): User identifiable group of data

referenced by the application but not maintained within the

boundary of the application.

ILFs and EIFs can contain business data, control data and rules based

data.

B) Transaction Functionalities / Elementary processes

Elementary process is a smallest unit of activity which is self-contained

and meaningful to the user. It constitutes the complete transaction and

leaves the business of the application in consistent state. So a

functional requirement such as ―Maintain Student Information‖ can be

decomposed in to Add Student, Change Student information, Delete

Student and Enquire about student.

iii. External Inputs (EI): An elementary process in which data

comes from outside (through input screen or other application)

to the process. It maintains one or more ILF. It may not maintain

ILF if the data is only control information. If it provides

functionality of Add, Change and Delete then they all three are

considered separately.

iv. External Queries (EQ): An elementary process in which data is

retrieved from ILF or EIF and sent outside without processing

(involving mathematical formula or other derivation). It can have

both input and output components that result in data retrieval

from one or more ILF or EIF. The input process does not update

69

or maintain any FTRs (ILF or EIF) and the output side does not

contain derived data.

v. External Output (EO): An elementary process in which data is

retrieved from ILF or ELF, processed / derived (through some

algorithm or calculation) and passes from internal process to

outside (presents the information to the user or send to other

application). It may be in the form of report or output files sent to

other applications. The derived data does not appear in FTR.

You will learn about FTR in next step.

2) Assign complexities to each function

Once all the functionalities are identified as per above elementary processes,

their complexity level is identified as per guidelines provided below.

A) Assign complexities to Data Files

To determine complexity level of Data functionalities (ILF, EIF), Record

Element Types (RET) and Data Elements (DE) are considered.

DET – Data Element Type is a unique user recognizable, non-recursive

and non-repetitive field. DET is a field that is dynamic. DET can also be in

the form of photograph, sound etc.

RET – Record Element Type is a user recognizable sub group of data

elements within an Internal or External File. It would be logical grouping of

70

Internal Logical Files

 Data Elements

1-19 20-50 >50

R

E

T

 A

2 – 5 A

> 5 A

External Interface Files

 Data Elements

1-19 20-50 >50

R

E

T

 A

2 – 5 A

> 5 A

data. It represents number of files or Tables required for storing DETs.

For example, if we have to store Student Information we may require one

RET but if we also want to store history of student‘s education, we may

require one more RET for the same student Entity. Depending on

functional requirement to store data, we will have number of RETs.

Likewise all the information we want to store, we need to consider

number of DETs and RETs for each.

Complexity levels for ILF and EIF can be determined as below.

Where Complexity Levels: L – Low, A – Average, H – High

B) Assign complexities to Transaction Ele mentary Processes

To determine complexity level of transaction functionalities (EI, EO, EQ),

File Type References (FTR) and Data Elements (DE) are considered

DET – Data Element Type is a unique user recognizable, non-repetitive

field used in the process. For Input process, it can be number of fields on

the screen. This also includes buttons on the screen.

FTR – File Type Referenced is by a transaction. It represents how many

internal or external files / tables are impacted by those DETs in the

process.

An FTR is either ILF or EIF. Each ILF that is maintained by external input

is counted as an FTR. An ILF or EIF that is referenced by the process are

also considered as separate FTR. For example, if an external input may

71

Elementary Input

 Data Elements

FTR 1-4 5-15 >15

<2 A

 A

>2 A

Elementary Output

 Data Elements

FT

R

1-5 6-19 >19

<2 A

2, 3 A

>3 A

Elementary Queries

 Data Elements

FTR 1-5 6-19 >19

<2 A

2, 3 A

>3 A

update an internal logical file but also refer to security file to check that

the user has proper security levels, then both FTRs are counted.

Where Complexity Levels: L – Low, A – Average, H – High

These tables are provided by IFPUG – International Function Point User

Group

3) Calculate unadjusted function points

Apply Complexity Weightages

Each function is then assessed for it‘s complexity level and a weighting factor

is assigned accordingly to derive unadjusted function point for the project.

Example :

Let us assume that we have been able categorise various functions in to

Elementary processes and Data files as described above and also categorize

them in to complexity level as given below

Complexity Weightages

Category A

EI

EQ

EO

ILF 10 15

EIF 10

72

Category

Number of Processes and Files

Low Average High Total

Inputs 10 12 8 30

Inquiries 6 10 5 21

Output 12 8 5 25

Internal Files 5 8 3 16

External Files 2 1 1 4

So, Function points will be calculated for each combination by the above

given count with their respective complexity weightage

Category

Elementary Processes and Data Files

count

Low Average High Total

Inputs 10*3=30 12*4=48 8*6=48 126

Inquiries 6*3=18 10*4=40 5*6=30 88

Output 12*4=48 8*5=40 5*7=35 123

Internal Files 5*7=35 8*10=80 3*15=45 160

External Files 2*5=10 1*7=7 1*10=10 27

Total 141 215 168 524

So the unadjusted function points calculated as 524.

4) Calculate Value adjustment factor total degree of influence by applying

weighting factor of General Syste m Characteristics.

73

There are 14 General System Characteristics (GSC) or factors. A weighting

factor is assigned to each of those characteristics based level of influence as

given below

No Incidental Moderate Average Significant Essential

0 1 2 3 4 5

Let us assume the weighting factor for various characteristics or factors for

our project are as given below

Factor Value

Backup and Recovery 4

Data Communication 3

Distributed Processing 0

Performance Critical 2

Existing Operating Environment 1

Online Data entry 4

Input transaction over multiple screens 3

Master files updated online 4

Information domain values complex 4

Internal processing complex 3

Code designed for reuse 5

Conversion / installation in design 3

Multiple installations 5

Application designed for change 4

Total Degree of Influence (TDI) 45

Value Adjustment Factor (VAF) = (TDI * 0.01) + 0.65 = (45 * 0.01 = 0.495) + 0.65 =

1.145.

5) Calculate Adjusted Function Point

74

Now calculate Adjusted Function Point as

AFP = UFP * VAF = 524 * 1.145 = 599.98 = 600 (rounded).

Notes:

1) Sometimes planning is done considering best case scenario and worst

case scenario. Best case scenario would be that the estimates will not

change much and most of the assumptions taken will be true. Worst

case scenario would be the estimates will fall wrong and many

assumptions could be wrong. Worst case scenario is considered to

keep backup resources ready so that by chance, if it becomes true,

back up resources can be used so that it does not impact overall

project schedule and quality.

2) If it is not possible to identify complexity levels (L/A/H) for various

elementary processes, average weightage of the corresponding

category (EI,EQ,EO,ILF,EIF) may be applied to number of processes.

Check your Progress 5

1) Functionalities are categorised into Data Functionalities and

 .

2) Provide difference between ILF and EIF

3) Data Element Type is a unique user recognizable, non-recursive and non-

repetitive field. True / False

4) The process where the data retrieved from ILF or EIF and sent outside

without any processing using mathematical formula or any other derivation, is

considered as Options a) External Query b) External Output

5) There are general system characteristics which can influence the

size in FP.

75

1.8 SOFTWARE COST ESTIMATION

Software cost estimation is one of the most important aspects of project planning

and management because any overrun beyond acceptable level could trouble

customer a lot and underestimated effort and cost can result into extra effort by team

and/or loss to the development organization. However estimating accurately in the

beginning of the project is challenging and hence may have to be done throughout

development process as more and more information and clarity is received.

Software size is most important parameter for estimating cost. We already discussed

two popular size estimation techniques LOC and FP in previous section.

Cost estimation primarily involves resource estimates encompassing

1. Human resources, Major portion of cost is for human resources

2. Environment (hardware) resources, tools and

3. Reusable software resources. Usage of reusable software components can

help reducing overall effort and time. The reusable component cost to be decided

based on following categories

 Off-the-shelf components acquired from third party at a price or can be taken

from previous project. Since they are fully validated, they can save lot of time

and effort

 Full Experience components (Specifications, design or code) used from

similar past project. They may not be used as is but with minor modifications.

 Partial Experience components. Previously developed components can be

used but with significant modifications.

1.8.1 FOLLOWING PARAMETERS OR FACTORS ARE CONSIDERED

FOR RELIABLE COST ESTIMATES

1. Experience in application domainand technology: Developer familiar with

application domain, required technologies and environment will have higher

productivity. One needs to consider that their rate would be higher than

inexperienced resources.

76

2. Product Complexity: Complexity can be factored in the size calculation as

discussed during FP calculation.

3. Project Size: As per Boehm, the rate of increase in required effort grows with

the number of lines of code at an exponential rate slightly greater than one

4. Av ailable Time: Some times more effort required if the timeline is reduced. If

the project needs to be completed in lesser time, it requires more resources

and hence more communication, coordination, training, and management

overhead.

5. Level of Technology: Technology involves programming practices, hardware

and software tools, and other supporting infrastructure. Modern system

analysis and design techniques, design notations, and technical reviews can

reduce the cost.

6. Required level of Reliability. Higher reliability (Accuracy, robustness,

consistency and completeness) can be achieved with higher level of process

compliance related to analysis, design, verification and implementation.An

effort multiplier can be used as per categories of reliability expectations.

1.8.2 COST ESTIMATION APPROACHES

Problem / Requirement based estimation

In this case product size is calculated in terms of LOC or FP as discussed in

previous sections and productivity for each can be taken from past experience or

industry standard can be taken as baseline to estimate development cost. Effort for

reusable components depending on categories discussed above can be reduced

from the size. Environment cost can then be added to derive overall project cost

Process Based Estimation

Here the estimation is based on the process to be followed. Software functions are

identified from project scope and for each function; series of activities such as

Customer Communication, Planning, Risk Analysis, Requirement analysis, Design,

Coding, and Testing are identified. Then, effort for each activity for each function is

estimated based on past experience and average rate for each important activities

are applied. Note that some activities require high experienced people and hence

77

their rate will be higher whereas some activities may require low experience people

and hence their rate could be lower.

Use Case based Estimation

Use cases can be used for estimation if they are considered within the context of the

structural hierarchy that they describe. Level within the structural hierarchy is first

established, average use case length (in pages) is determined, software type (eg

real time) is defined, and sketch of system architecture is considered. Then after

number of LOC or FP calculated using empirical (past experience) data.

1.8.3 SOFTWARE ESTIMATION MODELS

Estimation models use derived formulas to predict effort as function of LOC or FP.

Various models expresses cost of the software project in terms of the effort required.

Non algorithmic model:

Here the estimation primarily depend on prior experience and domain knowledge of

the project managers and do not use any mathematical formulas. Expert Judgement,

estimation by analogy and price-to-win are some examples.

Algorithmic Models

Mathematical equations derived based on historical data are used for estimation.

Size and other parameters are provided as inputs. They are also calibrated to

specific environments. COCOMO, COCOMO II and Software equation are the

examples

COnstructive COst Model (COCOMO) was developed by Boehm which is based on

study of already developed software projects. It includes development, management

and support costs and uses size in terms of thousands of Delivered Lines of Code.

(KDLOC). It is assumed that the software is developed in water fall model. It is based

on hierarchy of three models

a) Basic Model calculates Effort in person months considering size

Effort E = A * (size)B where A and B are constant numbers based on type of the

project

78

b) Intermediate Model includes parameters such as reliability and complexity. There

are 15 parameters for which different multipliers are used based on rating of each

parameter

c) Advance Model calculates effort as function of program size and set of cost

drivers for each phase of software engineering. It includes all characteristics of

the intermediate model and provides procedure for adjusting phase wise

distribution of the development schedule.

COnstructive COst MOdel II (COCOMO II)

It enhances COCOMO model to develop support capabilities for continuous model

improvement and provide quantitative analytical framework, set of tools and

techniques for evaluating the effects of software technology improvement on the

software life cycle development cost. It is a hierarchy of four estimation models

- Application composition model

- Early design model: It uses size as input that is estimated considering

complexity of screens, reports etc.

- Reuse model

- Post-architecture model

Size is expressed in terms of object points, function points or LOC

It considers 17 cost drivers.

It is based on non-linear reuse formula, auto calibration features and reuse model.

Check your Progress 6

1) can help in reducing the time, effort and cost. Options a)

reusable component b) Simple functionality c) inexperience human resources

2) Same size project may require more cost if the available time line is low. True

/ False? Why?

3) Briefly explain Process Based Estimation

4) COCOMO stands for

5) COCOMO used FP as an input . True / False?

79

1.9 LET US SUM UP

From a development perspective, one need to estimate size of the product so that

one can derive effort required (based on productivity), time required to develop the

product and total cost of the product in advance. This can help in effective planning

and tracking of various activities within the development project.

As far as possible the size measure should be such that, it can be consistently used

across all the technologies so that customers can compare price and quality of two

products or can compare expected product with delivered product and make

decision.

Considering the fact that the complexity may differ from functions to function, it is

recommended to factor in complexity levels also in estimates.

Lines of Code (LOC) and Function Points are two very well-known size measures

which are output oriented and hence easy to compare. However LOC has its own

limitations – cannot be accurately measured in advance, and has dependency on

person writing the code, the approach taken and the language selected to code the

functionality. Assuming higher LOC means higher size demotivates programmers to

come up with innovative solutions to reduce the size of code for same functionality.

This is considered to be the biggest drawback of LOC. Function Point on the other

hand is based on functionalities delivered and hence it overcomes most of the

drawbacks of LOC. FP is very useful even though it is somewhat subjective. FP also

takes into consideration complexity levels for each functionality and even

environment related factors for the entire project. Since it is independent of

technology and from functionality point of view, it motivate team to implement / refine

processes, or use tools that can help improved quality and productivity

Various cost estimation models can be used which are based on size calculated as

per LOC or as per FP. The simplest way to estimate cost would be to calculate total

effort by dividing size with productivity to derive overall effort and then multiply with

rate to derive at cost. However there are many parameters to be considered due to

which this simple calculation may not result into accurate cost estimates. These

parameters include experience level of resources for different tasks, Product

complexity, Project size, available time, level of technology and required level of

80

reliability. They can bring in additional management / communication / training or any

other such overheads.

Cost estimates are done in one or more of three ways a) Problem/requirement based

estimation b) Process based estimates and c) use case based estimates.

There are non-algorithmic approaches where estimation primarily depends on

experience and domain knowledge of the project manager and algorithmic models

where estimation is based on some mathematical equations. COCOMO, COCOMO

II and Software equations are algorithmic models.

1.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

1) Size

2) True

3) Complex requirement or requirement requiring complex logic will take more

time, have high potential to quality issues and hence it is important.

Check your Progress 2

1) If we know what is the total size and how much can be done in one day, it is

possible to expect amount of work for a smaller duration of time (say week)

and at then end of that period (week) we can compare actual work

completed with the expected.

2) False

It will not be accurate and sometime variation could be very high which can

result into financial loss to customer or to development team.

Check your Progress 3

1) False

Because there are lot of challenges and many parameters, factors to be

considered which are not easy to calculate objectively.

2) True

They primarily need good quality software in time at lower cost

81

3) False

BecauseSame output (software product) can be developed by two different

people with different amount of effort (input) and hence it will not be

comparable. It also demotivates any improvement in the productivity,

reusability.

Check your Progress 4

1) Comments and spaces

2) Most Likely

3) Three main advantages of FP:

1. FP can be calculated early in the life cycle based on functional

requirements and can be refined once more and more clarity is

received, design complexity is derived

2. It is independent of technology and programming language and hence

can be consistently measured

3. It is output oriented and hence motivates team members to bring

improvements in solution, increase reusability

4. It is possible to measure performance trends across periods of time for

various projects and to validate that accuracy, productivity is improving

and cost is reducing

Check your Progress 5

1) Transaction Functionalities

2) Internal Logical File(ILF) is maintained within the boundary of the application

where as External Interface File(EIF) is only referenced and not maintained

within the boundary of the application

3) True

4) External Query

5) 14

82

Check your Progress 6

1) Reusable Component

2) True

because, it will require more human resources and hence training,

communication, management overhead will be higher

3) In Process Based Estimation, for each functionality effort is estimated for

various activities such as customer communication, Planning, Risk analysis,

requirement analysis, design, coding testing etc based on past experience

and then effort for all the activities for all the functionalities are added up to

derive total effort and cost.

4) Constructive Cost Model

5) False. It used LOC as input.

83

Unit 2: Quality Concepts and
Approaches

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. Quality Concepts and Importance

2.4. Cost of Quality

2.5. Technical Reviews

2.6. Let Us Sum Up

2.7. Check Your Progress: Possible Answers

2

84

2.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand:

 Meaning and get conceptual clarity of quality

 Importance of maintaining quality in software with potential impact of defective

software

 Reasons due to which every software application has issues / defects

 Cost of maintaining quality and not maintaining quality

 How Reviews can help in maintaining quality

 Types of reviews to be used during SDLC

2.2 INTRODUCTION

We as a customer want best quality product at cheaper rate as early as possible.

This is because for any product requirement, small or big, multiple options are

available in the market. Under this competitive environment, every organization

needs to see how they can provide their product cheaper, better and faster. Same is

the case with software products.

Software development is an intense activity requiring many resources and teams. It

will never happen that the software developed will have no issues at all, even If best

quality people are involved. Maintaining good quality of software product is equally or

even more important than for other products because the software unlike other

physical products is not just used by one person but by thousands of people.

Poor quality products could harm heavily and hence it is important to

o Understand meaning and concepts of quality,

o Realize that all software application will have issues and defects,

o Learn what kind of processes to be incorporated so that the quality is

maintained at high level and

o Understand what kind of plan the organization should prepare for every

project.

Many organizations design their quality processes to aim zero defect and fist time

85

right (though it is practically impossible) so that highest level of quality can be

achieved without incurring additional cost. One may feel that it requires time to check

the quality of the software (finding defects in the software) and hence may increase

the cost but once we understand what is cost of failure, we will realize that in most

cases cost of not taking quality assurance and quality control steps would be higher

than spending time and effort for the same.

Cost of Quality refers to the cost incurred to assure the quality, identify quality issues

and rework to remove issues. We will also see how overall cost can be reduced

when we find the defect early.

With that in mind, we will also understand which aspects are to be covered and

processes to be implemented to ensure quality and discuss technical reviews to be

implemented at each SDLC phase to ensure quality.

Lastly we will discuss how an organization can continuously improve quality.

2.3 QUALITY CONCEPTS AND IMPORTANCE

If software does not deliver the intended functionality and features, it‘s of no use. All

the effort and money spent on the incomplete or defective software application is

waste. It had been estimated few years back that billions of Dollars were wasted

every year due to such poor quality software. Software is developed for benefits but

defects in the software results in loss.

Many times even small defects can impact very heavily in terms of cost, prestige and

sometimes even life also. Let us see few examples.

 In November 2003, three babies died in Israel as the food they took

contained less vitamin B1 than required and shown on the label. It was

due to defective formula.

 European Space Agency (ESA) designed Ariane 5 as an enhancement of

successful Ariane 4. However this space craft veered off its flight path,

broke up and exploded within short time of its launch. Why? Just because

a piece of software from previous launcher system was not removed even

though it was not required

86

 Digital Payments firm MobiKwik reported loss of over Rs 19 crore due to a

small bug which allowed their users to use money beyond their balance

amount.

As you can see in the examples above, the mistakes could be very small but the

impact could be very high.

So, We as developers make mistake which results into defects/bugs in the software

solution which in turn gives incorrect results and not only fails to meet expectations

but may lead to financial/social/business or sometimes life loss..

Sometimes the impact for a single instance may be very low but if it occurs more

frequently than the overall impact could be very high. Refer MobiKwick case. If only

one or two customers unknowingly spent more money than their balance, the impact

could have been low. But if thousands of customers knowingly/unknowingly withdraw

or spend more than their balance, the total loss will drastically increase

There are many reasons due to which applications have defects

 Time Pressure

 Low Technical or domain knowledge of the team members involved

 Complexity – of requirements, design, technology or logic

 Incorrect understanding of requirements

 Communication gaps between teams and team members within team

87

 Environment Conditions. The system may have to be implemented in

heterogeneous environment (Desk top, Mobile, ATMs or any other such)

One can realize that there are no applications in the world which do not have any

defect. Even some standard applications we use almost daily like MS office would

have issues but may not be impacting us or they may not be critical.

So, ensuring quality is very important. It can be considered as ‗doing things right‘

with an aim to ensure fitness for use of the software and hence leading to customer

satisfaction.

Check your Progress 1

1) A small mistake made by developer can have critical negative impact on the

customer. True / False?

2) No application can be error free. True / False?

3) Provide any 3 reasons because of which applications have defects

2.4 COST OF QUALITY

Ensuring and controlling high quality is important but requires additional time and

effort and hence questions come to mind - how much effort should be spent for

quality? Before we get into understanding Quality Assurance and Quality Control

related processes, let us understand what is cost of quality

Cost of quality is an approach to quantify the total cost of quality related effort and

deficiencies. It means cost of achieving quality and also cost of low-quality software.

There are three components to these efforts

1) Failure Cost:

It is also termed as cost of poor Quality. These costs would not be required if

there are no defects. The defects could be in requirement specifications,

designs, coding and early phases of tests. Failure cost has two components,

Internal and External.

a) Internal Failure Cost is incurred when the defects were detected

before the application is moved to production environment.

88

It includes direct cost of

o Reproducing, analysing and fixing the problem

o Retesting to determine that the defect is removed

o Reimplementation of the corrected code

o Costs involved in mitigating the risk of any possible side effects

due to rework done for fixing the problem. Any effort of

regression testing to ensure that the corrections/changes have

not impacted other working module. If by chance it has

introduced new defect then additional effort may be required to

identify and remove that also

o Costs related to collection of quality metrics based on which

organization can do assess the modes of failure

b) External Failure Costs are incurred when the defects were detected

after the application is delivered (or moved to production) It includes all

the above costs and additionally include effort and time spent on

o Analysis of issue / Complaint resolution

o Product return and replacement

o Help line support

o Labour costs associated with warranty work

o Indirect costs such unsatisfied customers, loss of reputation,

and loss of business

2) Appraisal Cost:

In order to reduce failure cost Organization must be spending effort in

implementing processes before the application goes into production. So

Appraisal cost includes

o Technical reviews of all the work products produced during or at the

end of each phase. It includes reviews of Requirement specifications,

Designs, and technical reviews of code

o Testing of application developed to find defect

89

o Cost of data collection and metric evaluation

3) Prevention Cost:

If the organization spends enough time and effort to train the people,

implement some standards and follow various processes, the overall number

of defects introduced in the application will be less and hence will reduce

appraisal cost and failure cost. It includes

o Management activities for planning and coordinating all quality control

and assurance activities

o Additional technical activities to develop complete requirement and

design models

o Test planning

o Training

Total Cost of Quality = Failure Cost + Appraisal Cost + Preventive Cost

2.4.1 COST REDUCTION DUE TO INCREASED PREVENTION AND

APPRAISAL COST

Analyse above stack bar diagram.

The first stack bar indicates that there was no effort spent on appraisal and

prevention and hence the failure cost was very high

The second stack bar indicates that some effort spent on reviews and testing

90

(appraisal cost) and hence the failure cost could be reduced. In fact the total cost

also got reduced.

The third stack bar indicates that organization decided to train the resources, put

additional effort on reusability and implement various processes (prevention cost). It

helped further in reducing appraisal, failure cost and also overall cost.

The last stack bar indicates that even further increase in prevention effort and cost,

the appraisal cost, failure cost and hence overall cost also got reduced.

2.4.2 COST REDUCTION DUE TO EARLY DEFECT DETECTION

Following diagram shows how much it costs if a defect introduced at the time of

requirement analysis is detected in other future phases. The cost is an industry

average cost based ondata collected by Bohm and Basil [Boe01b] and illustrated by

Cigital [Cig07].

As you can notice the relative cost for finding and fixing the defect increases

drastically as we go from prevention to detection or the gap between defect injection

phase and defect detection (and correction) phase increases.

If the defect is detected in the same phase, cost is less, but if it skips that phase and

is detected in next phase, the cost further increases and if it leaks / propagates up to

production, the cost increases to 100 times more than if it would have been found in

the same phase.

91

In general, cost of testing (finding and detecting defect) later is much higher than

cost of testing and finding early.

This is also because a relatively minor error left early in the process could be

amplified into a major set of errors later and the reality is that defects are introduces

at every stage.

This means that we should implement Quality Assurance processes not only to

assure and improve quality but to reduce cost.

Check your Progress 2

1) There are three costs of quality. Failure cost, Appraisal cost and

2) Any cost incurred in testing of code to find defect is considered to be

 cost

3) Failure cost cannot be reduced by adding costs related to training resources.

True / False?

4) Cost of requirement defect found in testing is always lower than cost of coding

defect found in testing. True / False

2.5 TECHNICAL REVIEWS

Reviews are very effective in finding errors early in the life cycle so that they do not

propagate to the next step/phase. It saves time by reducing amount of potential

rework required at a later stage.

2.5.1 REVIEWING AT EVERY STAGE

As discussed in section 2.4 – cost of quality, it is always better and much cheaper to

find defects in the same stage where they were introduced. Otherwise, the defect

may amplify into many defects and the cost of finding and fixing defects will go up

drastically. The changes also may be required in all in-between work products. It is

hence always better to review the work products at every phase of software

development project.

Let us briefly discuss how the reviews should take place and what issues can be

checked during each review.

92

A) Requirement Ambiguity Review

Requirement is a capability needed by a user to solve a problem or achieve

an objective that must be met or possessed by the system or its component.

Requirements must be complete and clear without giving any opportunity of

misunderstanding. So, various attributes such as Clarity, Completeness,

Understandability, validity and traceability are taken into consideration for

review. Let us understand requirement ambiguity review as an example.

A requirement is considered ambiguous (not clear / confusing), if it can

create different understanding to different people.

For example a requirement says that ‗There are three membership categories

– Silver, Gold and Platinum. Such card members do not have to pay any

reservation fees‘. Now one user may understand that all the three types of

card members do not have to pay any reservation fees whereas someone

else may understand that Platinum card members do not have to pay

reservation fees but general guests or silver and gold card members have to

pay reservation fees. So, there is an ambiguity in the statement and

clarification needs to be sought from the customer. This is known as

referential ambiguity because it is not clear which members are referred by

the second statement – Such card members….

Similarly one other requirement says ‗customer can get 10% discount, if

booking is done for return journey or number of seats booked are four or more

and gold card member‘. This could be interpreted and implemented in any of

the 2 ways below

a) ‗customer can get 10% discount, If (booking is done for return journey

or number of seats booked are four or more) and (gold card member)‘

b) ‗customer can get 10% discount, If (booking is done for return journey)

or (number of seats booked are four or more and gold card member)‘

Both can result in different answers and hence need to be clarified. This is

known as Linguistic ambiguity.

There is one more question in the above requirement. We assume as per

previous requirement that there are three membership categories and with our

93

general and practical knowledge we understand that Platinum category is

higher than Gold category of membership. So, if Gold card members get

discount then what about discount for platinum card members? Actually

customer wanted only Platinum card members should get discount or

Platinum card members should also get discount which should be greater or

equal to 10%. In any case, we need to get clarifications for such omissions.

Let us see some other ambiguity types

- Dangling Else: A condition is given but it is not specified what to do if

the condition is not satisfied

- Omissions

o Causes are given but effects are missing. There are three types

of members but discount policy given only for one member.

Other members should get some benefits as compared to

general category. Otherwise what is the advantage of those

categories? So, those benefits are missing.

o Effects without cause: For example, a requirement statement

says ‗It is sometimes necessary for a manager to give 5%

discount‘. It is not clear under which situation such discount

should be given

o Complete Omissions: Some pages or paragraphs are missing.

Likewise there could be many such ambiguities in the requirements specified -

Ambiguous logical operators, confusing compounding operators, Ambiguous

statements, Ambiguous variables and so on. It can lead to incorrect design

and wrong development if such ambiguities are not clarified.

B) Design Reviews

In general design is reviewed to ensure that it

o implements all the explicit and Implicit requirements

o provides complete picture of the software addressing data, functional,

and behavioural domain from implementation perspective

o Is logically partitioned in to sub systems and modules

94

o is readable, understandable, is represented using notations that

effectively communicates its meaning

o Contains distinct representation of data, architecture, interfaces and

components that leads to

 appropriate data structures

 components that exhibit independent functional

characteristics

 interfaces that reduces the complexity between components

and external subsystems

Reviews of Functional Architectural Design, Component Design Specification,

Database Design, User Interface Design and any other such design

documents should be conducted once they are created. The key attributes

considered during the design review includes Architectural integrity,

Component completeness, Interface complexity etc.

For example, as part of database design one may review the design to ensure

that

o data is represented semantically in the same way within and across

tables

o there is no missing or inaccessible data because of inadvertently

storing nulls or blanks

o there are no partial data due to truncations.

Following are some of the sample possible issues which can be identified and

fixed during database design reviews

o The data type and length for a particular attribute may vary in tables

though the semantic definition is the same. Example: For online

reservation system Meal code can be defined as number (5) in one

table and varchar (10) in other table

o The data representation of the same attribute may vary within and

across tables. Example: A flag representing Gender may be defined as

M/F in one table, 1/0 in other table or Male/female in third table.

95

o Foreign key values may be left ―dangling‖ or inadvertently deleted. For

example, It may be possible to delete passenger record without

deleting his flight record. So, foreign key of a flight record does not link

to any record in passenger table.

o Unique identifier is missing or redundant because of which specific

record may be inaccessible. For example, customer ID 342223 may

identify multiple customers.

o Integrity constraints are not enabled and because of which null or non-

unique or out of range data may be stored.

There could be many other such issues one can find. In general, as part of the

database design reviews, one need to ensure that the database design, the

relationship established between the tables and the constraints applied on the

various tables are such that the potential issues mentioned above are either

absent or at minimum level

C) User Interface design Reviews

The application user interface should be simple, readable, easy to

understand, easy to navigate and aesthetically rich so that user consistently

gets good feeling while using different functionalities of the application. So

the user interface design and guidelines are expected to be ready before

coding starts. Following aspects are considered while designing and

reviewing the user interface

o Position of Title, Menu options and Standard buttons

o Alignment of fields

o Height and width of text boxes and all other controls

o Font colour and size of all labels, entered text, error messages

o Provision to distinguish frequently used options

o Mechanism to distinguish Mandatory input fields

Every program specifications should be reviewed to ensure that screen

design specific to the functionality follows the guidelines consistently.

D) Code Review

96

Primary Objective of code review is to ensure correctness, understandability,

maintainability and complexity of the code developed. The process aims to

identify errors related to Data declaration / Data reference / Computation /

Comparison / Control flow / interface / Input – Output and Coding Standards

2.5.2 REVIEW PROCESS

The review could be formal or informal. Level of formality depends on the extent to

which various processes are followed.

Fully formal reviews involve various pre-defined activities in specified sequence

1. Planning of review meeting,

2. Distribution of review material and work product in advance,

3. Conducting overview meeting to provide background and expectations from

the review,

4. Offline preparation by reviewers,

5. Conducting formal review meeting to review, discuss and record errors,

6. Carrying out rework for incorporating all the feedback received and

7. Conducting follow-up meeting to discuss and ensure that all the feedbacks

have been incorporated.

This is a group activity and checklist is generally used against which the work

product is reviewed.

Informal review

It is generally done individually without any planning. No checklist is used or defect

recording also not done. The defects may be found and resolution can be done at

the same time.

Who should review?

Reviews can be done by self (who has created the work product), by peer (other

member of the team), senior (team leader or manager), Expert (of the business

domain and/or technology) or by group of people (auditors, other team). Each one

can bring in different perspective and experience to find current and potential issues

in the work product and provide suggestions for improvements. Many organizations

97

hence incorporate a formal policy specifying what kind of reviews should be done at

each stage and who should do these reviews.

However, it is important that you, as a creator of the work product, should first review

your own output before it is handed over to someone else for review. Generally

individual reviews are informal and group reviews and audit/inspections are formal or

partially formal.

Benefits of Review

Reviews can find many errors and issues such as wrong understanding, non-

maintainability, inconsistency, missing aspects, standard violations or non-

conformance to the technical expectations. Many of these issues cannot be found

easily by other means.

There are many advantages of reviews as described below

o It can discover many errors / issues at once,

o It Identifies root cause which can otherwise amplify into many errors in

code.

o It can prevent reoccurrence of similar errors in the future tasks / work

products

o It can reduce overall effort and cost.

Check your Progress 4

1) Reviews can help in finding defects early in the software development life

cycle. True / False?

2) Provide any two examples of ambiguous requirements

3) Provide two possible errors one can find during database design reviews.

4) Provide any 3 aspects the designer should consider while designing user

interface of an application.

5) Coding standard related issues can be found only during review

6) Provide any 2 benefits of reviews.

98

2.6 LET US SUM UP

In competitive environment, providing best quality product is extremely important

apart from competitive price. We as developers make mistakes which lead to

incorrect results or failures and can impact very negatively (financial loss, social loss,

loss of prestige or sometime even loss of life) depending on criticality of software. It

is also not possible to develop completely error free application due to various

reasons such as time pressure, low capabilities, complexity, communication gaps or

environmental conditions.

There is a big failure cost involved if a defect is found after the development is

completed in terms of time spent for reproducing, analysing, fixing and retesting of

defects and also to ensure there are no side effects due to changes. External failure

can even impact reputation and potential business loss. Organization should hence

include prevention and appraisal related activities. It not only reduces failure cost but

can reduce total cost of quality also.

We also discussed that if the defect is introduced in one phase and found after few

phases, the cost may increase exponentially. Organizations hence include reviews at

the end of each SDLC phase. So, Requirement reviews are done for

understandability, completeness etc. Designs are reviewed and even codes are

reviewed.

Reviews could be formal, with well-defined activities conducted by group of people,

or informal conducted by self, peer or senior.

2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

1) True

2) True

3) Applications have defects due to:

1. Low knowledge or capability of resources,

2. Wrong understanding of requirements.

3. Communication gaps

99

Check your Progress 2

1) Prevention Cost

2) Appraisal

3) False

4) False

Because the gap between Requirement Phase and testing phase is higher

and hence the cost is higher whereas gap between coding phase and testing

phase is lower and hence cost is lower.

Check your Progress 3

1) Three important activities involved as part of Quality Assurance:

1. Implementing standards,

2. Reviews and Audits,

3. Testing

2) False

Because It starts from the beginning of the project. In fact it starts from

contract itself.

Check your Progress 4

1) True

2) Two Ambiguous requirements Examples:

1. Referential Ambiguity. Provide any example similar to example given here

as ‗There are three membership categories – Silver, Gold and Platinum.

Such card members do not have to pay any reservation fees‘

2. Linguistic Ambiguity. Give example similar to given in unit - ‗If booking is

done for return journey or number of seats booked are four or more and gold

card member, you get 10% discount‘.

3) Two possible errors one can find in database design reviews:

1. Data type and length for a particular attribute vary (not consistently used)

in different tables

100

2. Foreign key values may be left ―dangling‖ or inadvertently deleted.

4) Three aspects the designer should consider while designing user interface of

an application are:

1. Alignment of fields,

2. Height and width of text boxes or any other control,

3. Font colour and size of all labels , entered text, error messages

5) Code

6) Benefits of Review:

a. It can discover many errors/issues at once,

b. It Identifies root cause which can otherwise amplify into many errors

in code.

c. It can prevent reoccurrence of similar errors in the future tasks / work

products.

101

Unit 3: Technical Metrics for
Software

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Approach for Metrics Calculation

3.4. How Metrics are used

3.5. Metrics at each phase of SDLC

3.6. Benefits of Metrics

3.7. Let Us Sum Up

3.8. Check Your Progress: Possible Answers

3

102

3.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand:

 Meaning of metrics

 Importance and use of metrics

 Approach for calculating metrics

 Various defect related metrics

 Technical metrics for each SDLC phase

 Benefits of Metrics

3.2 INTRODUCTION

We already discussed measures in the earlier unit. Measures provide quantitative

indication of the extent/amount/dimension/capacity or size of some attribute of a

product or a process. For example number of errors detected in a component is a

measure. Total lines of code for a program is a measure, Total function point is a

measure. So, measure is a single data point collected. Measurement is the process

of determining the measure.

Metric as per IEEE standard is a quantitative measure of the degree to which a

system/ component or process possesses a given attribute. For example, % of

components having defects. So, Measure alone is just a number and may not

provide any useful meaning but metric relates the individual measure in some way to

give some meaning. For example, if someone has found say 20 defects in

component 1 and 40 defects in component 2, apparently it looks like component 2

was badly coded as compared to component 1. But if code 2 was 3 times bigger

than code 1 then actually code 1 was badly written in comparison to code 2. So, one

can come to some conclusion only if he/she compares number of defect with respect

to size of the program. Hence, measures are useful only when they are related in

some way. Here, the measure ‗number of defects‘ is related to other measure size of

component. This metric is called Defect Density.

Simple measures like LOC, FP etc which are directly observable are also called

primitive measures and Metrics are called Derived Measures because they are

derived from one or more primitive measures.

103

Metrics are very useful in taking some corrective actions and also preventive actions

for future activities or projects.

It is important to note this phrase – ‗If one cannot measure, then, one cannot

improve‘. In case of traveling one can derive how much more to be travelled only if

one knows how much is already travelled. Similarly, if one knows that he/she is at

say 60% in terms of knowledge or studies, He/she can conclude that he/she has an

opportunity to improve knowledge by 40%.

We will discuss some of the important metrics used at each phase of SDLC along

with calculation formula for each.

3.3 APPROACH FOR METRICS CALCULATION

Following activities to be done to derive metrics

1) Formulation – Understand and derive which metrics to be measured.

Example: Number of defects per size of code to understand which code is

badly written

2) Data Collection –

Example: For our requirement, collect number of defect found in each code

and size of each code. For the time being, we assume that there are only two

programs

Code Size (LOC) Number of defects

C1 5000 20

C2 16000 40

3) Analysis: Compute metrics as per pre-defined formula that gives meaning.

So, in our case we will find our defects per 1000 lines of code so that

comparison can be meaningful.

104

 defects of code (Defects /

KLOC)

C1 5000 20 20/5 = 4

C2 16000 40 40/16 = 2.5

4) Interpretation: The metrics are evaluated so that we get insight into the

quality. For example, from step number 3, we come to know that program C1

is badly written because it has higher number of defect per KLOC

5) Feedback/Action: Based on the interpretation, feedback / recommendations

are given to the concerned software team so that they can do root cause

analyses and take some action for reducing issues in future. We will discuss

improvement process in section 4.5.

Check your Progress 1

1) Provide approach for Metrics calculation and usage.

3.4 HOW METRICS ARE USED

Though metrics collection and analysis require additional time, it can actually save

time in long run by avoiding some rework if proper corrective and preventive actions

are taken based on metrics analysis.

We already discussed Productivity metric that is based on size of the product (LOC

or FP) and Total effort spent in developing the product. So, if size S was 1000 FP

and it required total 200 hours of effort E for development, then the productivity P = S

/ E = 1000/200 = 5 FP per hour. This productivity can be used for estimating future

projects.

1) Defect Density

Defect Density is the number of confirmed defects detected in

software/component during a defined period of development (or operation)

divided by the size of the software/component.

Code Size (LOC) Number of Defects / 1000 lines

105

Defect Density = Number of defects / Size

where size may be in terms of LOC or FP.

We already discussed one example in previous section

Once programs with high Defect Density are found, one can do root cause

analysis to find the reasons for the same. It may turn out that the programmer

is inexperienced or had not gone through proper training. So as a preventive

action the next large / complex program may not be given to him or some

additional training and guidance may be given to him due to which he does

not make similar mistakes in the new programs.

The Average Defect Density for the entire project can help to predict

expected number of defects in future similar projects. So, let us assume that

in past, 10 defects per 100 FP were found and the new project is of size 700

FP, we can predict that we will approximately have 70 defects in the new

project. This can help in planning and even taking some improvement steps

and target to reduce number defects to be 50 instead of 70. This is how

average Defect Density can be useful in predicting quality of future project,

planning and taking steps for improvement.

There can be variety of metrics generated by organization and project

manager which can be used for planning and monitoring the work and bring in

improvement in productivity or quality of product or process.

2) Defect Age

We have seen in previous section that cost of quality increases if the defect is

not found in the same phase in which it was injected. A metric called Defect

Age is useful for the same.

106

Defect Age is measured in terms of time or in terms of phase. Defect age in

terms of time provides number of days it took to fix the defect (Difference

between the date of fixing and date of detection). It may not give much

meaning unless we know overall project schedule of the project. Defect age of

2 days may be very bad for a 2 week project but defect age of 4 days may be

fine in case of 6 months project. The time required to fix the defect may also

depend on various other parameters such as complexity of defect, resources

allocated to the project and other. However the key thing is to find Defect age

in terms of Phase which conveys that the processes are not good enough to

identify defects in the same phase in which they were injected.

Defect Age (in phase)

Defect Age (in Phase) is the difference in phases between defect detection

phase (when defect was identified and fixed) and defect injection phase

(when the defect was introduced).

So Defect Age = Defect Detection Phase number – Defect Injection Phase

number

Following are the typical SDLC phases.

1. Requirements Analysis

2. High-Level Design

3. Detail Design

4. Coding

5. Unit Testing

6. Integration Testing

7. System Testing

8. Acceptance Testing

9. Production/ Maintenance

If a defect is identified in System Testing (phase number 7) and the defect

was introduced in Requirements Analysis (phase number 1), the Defect Age

is 6. It conveys that the defect introduced in requirement phase remained as

107

defect for 6 phases.

Average Defect Age = Total Age / Total number of defects. Higher the

average age, higher the cost. The objective of the organization would be to

continuously reduce the defect age.

3) Defect Distribution

At a project or at an organization level, it is important to understand what is

the current distribution of total defects against each phase. It is measured in

terms of % of defects detected in a phase. So, if out of total 400 defects, 4

defects were found in Requirements through Requirement reviews, we can

say that 1% defects were found in Requirement phase. If a project manager

realizes that this is less than average, he / she can come up with an

improvement plan. Please refer section 4.5 Quality Improvement where the

improvement process is explained in detail.

Check your Progress 3

1) If we assume that there were three programs. We found 10 defects in

program P1, 8 defects in program P2 and 15 defects in program P3. We can

say that program 3 was badly written. True / false? Why?

2) Defect Age in phase is more important than Defect Age in time. True / False?

Why?

3) Briefly explain how Average Defect Density can be useful for future projects

3.5 METRICS AT EACH PHASE OF SDLC

We already discussed importance of reviews at each stage so that defects in

subsequent phases can be prevented. Quantifying quality at each stage is going to

be very useful. So let us understand some Specification, Design, Coding and Testing

metrics.

3.5.1 METRICS FOR SPECIFICATION QUALITY

We have already discussed meaning and types of ambiguities in section 2.6.1.

Apart from doing ambiguity reviews, the requirement specifications can be assessed

through various characteristics as suggested by Davis and his colleagues. Let us

108

see some examples

1) Specificity (lack of Ambiguity): it is measured in terms of consistency of the

reviewers‘ interpretations of each requirement. It provides quality of

specifications based on consistency of the reviewer's understanding of each

requirement

Specificity Q, = (nui* 100) / nr. where

nui = number of requirements for which all reviewers had identical

interpretations and

nr = total number of requirements.

If all requirements were interpreted identically by all the reviewers, it will be

100%. In this case the probability of your understanding being wrong will be

very less.

2) Completeness: It measures the percentage of necessary functions that have

been specified for a system (it does not include non-functional requirements)

Completeness Q 2 = (nu) / (ni * ns)

nu =number of unique functional requirements

ni = number of inputs (stimuli) defined or implied

Ns = number of states specified

Similarly many other characteristics can be measured such as

Understandability, Verifiability, Achievability, Traceability, Modifiability,

Precision, and Reusability. However those are not important at this stage and

hence not being discussed.

3) Requirements Stability Index:Changes in requirements are very common

for any software development project. Changes could be due to change in

government norms, business situations or any other such reasons. The

changes however impacts overall effort, cost and planning. Higher the stability

of requirements, higher the probability of success.

Req Stability Index = {1 - (Total No. of changes /No of initial requirements)}

109

3.5.2 METRICS FOR DESIGN MODEL

Quality and effectiveness of software design is very important for the success. Also,

quality of the final software product and design complexity has direct relationship

with quality of component developed based on the design. So, let us understand

some metrics measuring design complexity. This can help to decide where the focus

should be given more during other phases. Though these metrics are not perfect, it

is better to measure rather than not measuring anything.

Metrics for Hierarchical architectures (call and return architecture)

Card and Glass [car90] have defined three design complexity measures under

architectural design.

1) System Complexity is sum of structural and Data complexity

C(m) = S(m) + D(m)

a) Where S(m) is Structural complexity for module m is defined as

S(m) = f2out(m)

Where fout(m) – fan-out of module m is the number of modules

immediately subordinate (and that are directly invoked by) to module m.

b) Data Complexity: It indicates the complexity for internal interface of

module. Data complexity of module m is measured as

D(m) = v(m) / (fout(m) +1) where

V(m) is the number of input and output variables that are passed to and

from the module.

2) Design Structure Quality Index (DSQI)

The US Airforce proposed to derive DSQI based on measurable design

characteristics as discussed below. The information is obtained from data and

architectural design

S1 =Total number of components / modules defined in the program

architecture

S2 = Number of components / modules whose correct function depends on

the source of data inputs or that produce data to be used elsewhere

110

(except control modules)

S3 = number of components / modules whose correct function depends on

prior processing

S4 = Number of database items (includes data objects and all attributes that

define objects)

S5 = Total number of unique database items

S6 = Total number of database segments (different records or individual

objects)

S7 = Number of components / modules with a single entry and exit (exception

processing is not considered to be a multiple exit)

Calculate intermediate values

D1 (Program structure) = 0 or 1,

If architectural design was developed using a distinct method (eg. Data flow

oriented design or object oriented design) then D 1 = 1, otherwise 0

D2 (Module Independence) = 1 – (S2 /S1)

D3 (Modules not independent on prior processing) = 1 – (S3 /S1)

D4 (Database size) = 1 – (S5/S4)

D5 (Department compartmentalization) = 1 – (S6 /S4)

D6 (Module Entrance / Exit characteristic) = 1 – (S7 /S1)

DSQI (Design Structure Quality Index) = ∑ WiDi

Where i = 1 to 6, Wi is the relative weighting of the importance of each of the

intermediate values , and∑ Wi = 1 (if all Di are weighted equally, then wi = 0.167)

DSQI of current project can be compared with the average DSQI of the past

projects. One should aim for further design work and review if current DSQI is

significantly lower than average.

Metrics for Object Oriented Design

There are nine distinct measurable characteristics considered to derive of Object

Oriented Design metrics. Let us understand them.

111

a. Size: It isdefined based on four different views

Population: Total number of OO entities (classes or operations). It is a static

count.

Volume : Same as population but dynamically collected at any point of time.

Length: Measure of a chain of interconnected design elements such as depth

of inheritance tree

Functionality: It is an indirect indication of value delivered to the user by OO

application.

b. Complexity: isdetermined by assessing how classes are related to each

other

c. Coupling: isdefined as the physical connection between OO design

elements. For example, number of collaborations between classes or the

number of messages passed between objects.

d. Sufficiency: isdefined as the degree to which an abstraction possesses the

features required of it. Or degree to which a design component possesses

features in its abstraction, from the point of view of the current application.

These properties are important for the usefulness. It should reflect all the

properties required and possess all the features required

e. Completeness: Here multiple views are considered. It is expected to fully

represent the problem domain.

f. Cohesion: All operations are working together to achieve a single, well

defined purpose. It is defined as degree to which the set of properties the

class possesses is part of the problem or design domain

g. Primitiveness: Indicates the degree to which the operation is atomic (not out

of sequence of other operations in the class). It is applied to both operations

and classes. A class encapsulate only primitive operations.

h. Similarity: The degree to which two or more classes are similar in terms of

their structure, function, behaviour, or purpose.

i. Volatility: It is defined as the probability / Likelihood of occurrence of change

in the OO design

112

3.5.3 METRICS FOR CODING

These metrics can be generated once the design is complete and code is generated.

Here also size and complexity are important. We will discuss some of the primitive

measures and metrics proposed by Halstead - Program length, program volume,

program difficulty, development effort, and so on

Before we discuss those metrics, let us understand basic measures which are used

to calculate those metrics

n1 = number of distinct operators in a program

n2 = number of distinct operands in a program

N1 = total number of distinct operators

N2 = total number of distinct operands.

a. Program Length N = n1 log2 n1 + n2 log2 n2.

b. Program Volume V = N log2 (n1 +n2)

Program volume depends on programming language and represents volume

of information (in bits) required for specifying a program

c. Volume RatioL = Volume of the most compact form of a program / Volume of

the actual program

It can also be calculated L = (2/n1)* (n2 /N2).

d. Program Difficulty D = (n1 /2)*(N2 /n2).

e. Effort = D * V

f. Cyclomatic Complexity

This is other metric used to calculate complexity of the program based on

control flow graph of the code and measures the number of linearly-

independent paths through a program module.

113

For examples, the control flow diagram shown abovehave seven nodes

(shapes) and eight edges (lines), hence the

Cyclomatic complexity is 8 - 7 + 2 = 3

This is discussed in more detail as part of White Box testing Methods (section

4.2 of Block 4).

3.5.4 METRICS FOR TESTING

Testing is a process and not really constructing anything. Even though test cases are

prepared during testing, they are actually not part of the delivered product. Testing

however is an important activity and the effectiveness of testing depends on how

effective the test cases are. Like SW development, SW testing is also done by

people and they are also likely to make mistakes. Like we focus on quality of

requirements, design and code, we need to also focus and measure quality of

Testing. So, we will see few important metrics that measure the quality of testing

Testing Effort can be measured by Halstead measures as given below

e = V/ PL

Where V = Volume (discussed in Code based metrics)

PL = 1/ [(n1 /2) * (N2 /n2)]

Test Case Adequacy: This defines the number of actual test cases created vs

estimated test cases at the end of test case preparation phase. It is calculated as

114

(No. of actual test cases *100) / No of test cases estimated

Test Case Effectiveness: This defines the effectiveness of test cases which is

measured in number of defects found in testing without using the test cases. It is

calculated as

(No. of defects detected using test cases * 100) / Total no: of defects detected

Requirement Coverage:

(Number of requirements covered in Test Design * 100) / (Total number of

requirements)

Test Execution Coverage:

(Number of test cases Executed in a cycle * 100) / Total number of test cases.

Note that for the entire application testing, lot of effort is required to do testing of all

the test cases and we normally require many testing cycles. It may not be possible to

cover all test cases designed in all cycles.

Test Effectiveness: It measures the bug finding ability and quality of test.

TE =

(Total number of defects found during testing *100) / (Total defects found

during testing and after testing)

It is also referred as Defect Removal Efficiency. Low Defect Removal Efficiency

means – More defects left undetected before delivery, Reviews and Testing failed to

detect them.

3.5.5 METRICS FOR MAINTENANCE

IEEE have proposed Software Maturity Index (SMI), which provides indications

relating to the stability of software product

SMI = [MT - (Fc + Fa + Fd)]/MT .

Where

o MT - Number of modules in current release

o Fc - Number of modules that have been changed in the current release

o Fa - Number of modules that have been added in the current release

115

o Fd - Number of modules that have been deleted from the current release

Note that a product begins to stabilize as SMI reaches 1.0. SMI can also be used as

a metric for planning software maintenance activities by developing empirical models

in order to know the effort required for maintenance.

Check your Progress 3

1) Briefly explain Specificity metric.

2) can be used to check stability of requirements

3) System Complexity comprises of and

4) While calculating Design Structure Quality Index (DSQI) Intermediate value

D1 is considered to be 1 if the architecture was developed using a distinct

method (Data Flow oriented design or Object Oriented Design). True / False?

5) defines the effectiveness of test cases and is calculated as

6) Briefly explain Test Effectiveness and provide formula for the same

7) If Software Maturity Index is 0.25, we can say that the software product is

stabilized. True / False?

3.6 BENEFITS OF METRICS

Measuring and tracking various metrics for product / process can provide many

benefits to the organization as listed below

1. Helps in evaluation of the analysis, design, coding and testing models

2. Provides indication of the complexity of procedural design and source code

3. Facilitate the design of more effective testing

4. Enables effective and unbiased comparison of quality of the product and

performance of project or team or a person.

5. Can be used for Future Project estimation, Planning and Tracking Projects

against plan and Getting early warnings

6. Helps in taking timely corrective/preventive actions

116

7. Can be used for driving continuous improvements and tracking the same.

Check your Progress 4

1) Explain with example how metrics can help in taking timely

corrective/preventive actions.

2) Provide any 3 benefits of using metrics

3.7 LET US SUM UP

Any product or any document or any other deliverable can be objectively tracked or

compared if it can be measured in quantitative terms. Metric is a quantitative

measure of the degree to which a system, component or process possesses a given

attribute – It could be quality or completeness or complexity. For example Defects

per 100 FP or LOC (Defect Density) is a metric that provides the degree to which the

quality of the code is written.

The activities involved in metrics derivation includes formulation of metric, data

collection, analysis, interpretation and feedback or actions to correct the situation OR

prevent similar situation happening in future. Metrics can often save time by avoiding

rework if required corrective / preventive actions are taken even though deriving

metrics itself can take some time.

There are many important metrics generally used such as Productivity, Defect

Density, Defect Age, and Defect Distribution across phases etc. These metrics can

help in estimating effort for future projects, predicting quality (or defects) in future

projects.

Size, productivity and hence quality of the product also depends on various

important aspects such as quality of requirements, complexity of design, size and

complexity of code, quality of testing and maintenance activities. So, relevant

metrics are prepared for each stage.

Phase Key Metrics of the phase

Requirement analysis Specificity, Completeness, requirement Stability

Index

117

Design System Complexity – Structure complexity, Data

Complexity, Design structure Quality Index

Coding Program Length, Program Volume, Volume Ratio,

Program Difficulty, Effort

Testing Testing Effort, Test Case Adequacy, Test Case

Effectiveness, Requirement Coverage, Test

Execution Coverage, Test Effectiveness

Maintenance Software Maturity Index

Metrics provide many benefits such as ability to measure quality and complexity

objectively. They facilitate more effective test design, understanding performance of

a project or a team or a person, take timely corrective/preventive actions and also

helpful in future project.

3.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

1) Metrics calculation involves 5 steps-

1. Formulation where it is decided which metric to be used and how to

calculate,

2. Data Collection where necessary data collected for a period or a phase

which can be used to calculate metric,

3. Analysis. Here metric is calculated,

4. Interpretation. Calculated metric is evaluated to get an insight.,

5. Feedback/Action. Necessary action is taken for improvement.

Check your Progress 2

1) False because it is difficult to judge without knowing the size and complexity

of the programs.

2) True. Because Defect Age in terms of time without knowing duration of

project may not provide any insight. But Defect Age in terms of Phase clearly

tells how the defect remained unnoticed for all the phases in between

118

irrespective of project duration.

3) This is how Average Defect Density can be useful for future projects:

Assuming that team and other parameters are same, average defect density

can help estimating number of defects in the future projects (Future project

size * Average Defect age) and hence can help in planning and even

targeting to implement some processes to reduce defects

Check your Progress 3

1) Specificity metric also known as Lack of Ambiguity provides quality of

specifications based on consistency of the reviewers‘ understanding of each

requirement. It tells percentage of requirements for which all reviewers had

same understanding.

2) Requirement Stability Index

3) Structural Complexity and Data Complexity

4) True

5) Test Case Effectiveness defines the effectiveness of test cases and is

calculated as (No. of defects detected using test cases * 100) / Total no: of

defects detected.

6) Testing should be such that it finds all the defects from the application. If

there are some defects which were not found during testing but were found

by customer/user then we can conclude that the testing was not that

effective. It provides % of total defects could be found during testing

TE = (Total number of defects found during testing *100) / (Total defects

found during testing and after testing)

7) False because it should be actually closer to 1 to say that product is getting

stabilized and not towards 0.

Check your Progress 4

1) This is how metrics can help in taking timely corrective/preventive actions:

If past project experience says that on an average 10 defects are there in

100 FP size of program but in one program, if we find 18 defects per 100 FP,

119

we can immediately conclude that there is something wrong. The root

causes could be analysed and actions can be taken. For example, if it is

found that the knowledge level of the programmer was not good, proper

training can be given to the resource and / or he can be assigned less

complex program in future.

2) Benefits of using metrics:

1. It helps in evaluating quality / effectiveness of analysis, design, coding

and testing models

2. It provides indication of the complexity of procedural design and source

code so that testing effort can be accordingly applied

3. It allows effective and unbiased comparison of quality of the product

and performance of project or team or a person.

4. It can be used for Future Project estimation, Planning and Tracking

Projects against plan and Getting early warnings

5. It can help in take timely corrective/preventive actions

120

Unit 4: Software Quality
Assurance

Unit Structure

4.1. Learning Objectives

4.2. Introduction

4.3. Quality Standards

4.4. Software Quality Assurance

4.5. Quality Improvements

4.6. Let Us Sum Up

4.7. Check Your Progress: Possible Answers

4.8. References/Further Readings

4

121

4.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand:

 ISO 9000 quality standards

 ISO approach to Quality Assurance Systems

 Sample SQA plan that the organization must maintain and use during

software project

 How quality can be improved on an on-going basis.

4.2 INTRODUCTION

As a customer whenever we buy any product, we always have some doubts about

the quality of the product. If we see a stamp on the product indicating that the

product is certified by some approving authority (eg ISI) or any organization whose

prime objective is to audit and certify various products, we get confidence about the

quality.

In order to evaluate quality of any product, various dimensions are considered and

some minimum level of quality is expected for each dimension. If the product meets

those minimum level, the approval authority can certify the product for providing

minimum level of quality. If manufacturing or developing company follows

standardized methods and approaches for manufacturing / developing product, the

product will certainly meet required quality levels.

So, standards help in creating and evaluating products and services for good quality,

safety, reliability. For software product development also, there are various

recognized agencies who have established various standards. IEEE, ISO and CMM

are the main standards. We will primarily discuss ISO standards in this section. We

will consider them as Software Quality Assurance standards.

In competitive world, software customers expect higher and higher level of quality.

We also discussed that better and better quality can also reduce overall cost. Hence

it is important for any organization to strive for continuous improvements to deliver

better, cheaper and faster from current state.

122

4.3 QUALITY STANDARDS

The International Organization for Standardization (ISO) is an independent, non-

governmental international standard-setting body composed of representatives from

various national standards organizations. (Wikipedia).

ISO 9000 is a set of standards for quality assurance systems. ISO 9001 was

designed for any business primarily focusing on manufacturing.

ISO 9000-3 provides ‗quality assurance system model‘, primarily for software

development organizations and aims to cover intangible parameters such as nature

of software, complexities, interface complexities, and software life cycle. This

management model is independent of technology.

The quality assurance system model is divided in three parts – Framework,

supporting structure and life cycle activities.

ISO 9126 is an international standard for the evaluation of software.

The standard is divided into four parts which addresses, respectively, the following

subjects: quality model; external metrics; internal metrics; and quality in use metrics

Quality Dimensions:

Various researches have suggested different dimensions or aspects to be

considered while measuring quality of software. Let us briefly understand key quality

attributes identified and proposed by ISO 9126 standard

Functionality: The degree to which the software satisfies stated needs as

indicated by sub attributes

o Suitability - refers to the appropriateness (to specification) of the

functions

o Accuracy - refers to the correctness of the function

o Interoperability - the ability of a software component to interact with

other components or systems

o Compliance - addresses the compliant capability of software to

appropriate certain industry (or government) laws and guideline

o Security - relates to unauthorized access to the software function

https://en.wikipedia.org/wiki/International_standard
https://en.wikipedia.org/wiki/Standards_organization

123

Reliability: The amount of time that the software is available for use as indicated

by the following sub attributes.

o Maturity - concerns frequency of failure of the software

o Fault Tolerance – refers to the ability of software to withstand (and

recover) from component, or environmental, failure

o Recoverability - Ability to bring back a failed system to full operation,

including data and network connection

Usability: The degree to which the software is easy to use. It covers

o Understandability - Determines the ease of which the systems

functions can be understood

o Learnability – Refers to the Learning effort for different users, i.e.

novice, expert, casual etc

o Operability - Ability of the software to be easily operated by a given

user in a given environment

Efficiency: The degree to which the software makes optimal use of system

resources as indicated by

o Time behaviour - response times for a given thru put, i.e. transaction

rate

o Resource behaviour - resources used, i.e. memory, cpu, disk and

network usage

Maintainability: The ease with which repair may be made to the software as

indicated by

o Analysability - ability to identify the root cause of a failure within the

software

o Changeability - amount of effort to change a system

o Stability - sensitivity to change of a given system that is the negative

impact that may be caused by system changes

o Testability - effort needed to verify (test) a system change

124

Portability: The ease with which the software can be transposed from one

environment to otheras indicated by

o Adaptability - ability of the system to change to new specifications or

operating environments

o Instability - effort required to install the software.

o Conformance – Ability to port to other technical environment

o Irreplaceability - how easy is it to exchange a given software

component within a specified environment

These parameters provide checklist for assessing the quality of the system. Set of

questions are suggested for each parameter to find the measure (actual degree to

which the specific parameter has met).

The development organization hence needs to implement Quality Management

System which can help to meet and exceed customer expectation.

Check your Progress 1

1) Provide any 3 dimensions of quality

2) Attributes of Usability includes Understandability, and

Operability

3) is an important attribute for functionality. Options:

(a) Maturity, (b) Time behaviour, (c) Changeability, (d) Accuracy

4.4 SOFTWARE QUALITY ASSURANCE

Quality Assurance involves established infrastructure that support solid software

engineering methods, rational project management and quality control actions. It

also includes set of auditing and reporting functions that assess the effectiveness

and completeness of quality control actions.

SQAis an on-going process within SDLC (software development life cycle) phases

that ensures that developed software meets and complies with defined or

standardized quality specifications. It includes all the activities necessary to assure

that the application will satisfy the requirements.

125

So, Quality assurance process covers

Imple mentation of Standards: Coding, documentation or processes

standards. Organization may decide to follow IEEE, ISO, CMMI or any other

standards for their engineering processes. SQA function has to ensure that

these standards are adopted and followed during development of different

work products.

Reviews and Audits: SQA defines quality control processes involving

technical reviews to uncover errors. Audits are performed to ensure that

quality guidelines are performed. Audit of review processes are performed to

ensure that reviews are effectively conducted as per plan with an objective to

identify maximum problems or issues from the work product

Testing: SQA ensures that testing activities are properly planned and

performed to detect as many defects as possible.

Error/Defect collection and analysis: SQA collects and analyses various

data to understand how defects are introduced and which activities are best

suited to eliminate them.

Change Management: Any changes to the software disrupt quality and

timeline and hence should be managed properly. SQA ensures that change

management processes are executed properly.

Education: Improved knowledge and skills not only for development but even

for process implementation are required for continuous improvement.

Vendor Manage ment: SQA ensures that quality mandates are incorporated

in the contracts with external vendors

Security manage ment: The data needs to be protected at all levels including

firewalls for web applications and ensure that software has not been

tempered. SQA ensures that appropriate processes and technology are used

to achieve safety

Risk Manage ment: Ensure that the risk management activities are properly

conducted and risk related contingency plans have been established

126

SQA Plan

Every mature organization will have independent SQA group to implement SQA

processes and guidelines in the software projects. SQA group will come up with SQA

plan as a template for SQA activities that are instituted for each software project.

IEEE [IEEE93] has published standard for SQA plan that recommends structure of

the plan covering

1) Purpose and scope of plan

2) Description of all software engineering work products

3) All applicable standards and practices that are applied during software

process

4) SQA actions and tasks (including reviews and audits) and their placement

throughout software process

5) Details of tools and methods that support SQA actions and tasks

6) Software Configuration management procedures – How the versions of

software will be managed

7) Methods for assessing, safeguarding, and maintaining all SQA related records

and

8) Organization roles and responsibilities relative to product quality

Check your Progress 2

1) Provide any three important activities involved as part of Quality Assurance

Process.

2) SQA activity starts once the code is developed. True / False?

3) SQA need not worry about what is covered in the contract between the

company and the suppliers or the customer. True / false?

4.5 QUALITY IMPROVEMENTS

In the recent times, focus of quality has moved from ‗quality control‘ to ‗process

improvement‘ for ‗customer satisfaction and delight‘ by providing ‗value added

services and results‘.

127

This is possible only with emphasis on standards, processes, and methods aligned

to globally recognized frameworks.

Considering its importance, many organizations have adopted formal approach to

SQA.

Statistical Software Quality Assurance

In order to achieve continuous improvement in quality of the software, it is important

to take some corrective and preventing actions on various root causes. In order to do

those, one need to first find out the basic reasons / root causes for various defects or

issues in the work product.

So Defect data is collected over a period of time, root cause analysis is done to

attach specific root cause to each defect and a frequency table is generated for all

those root causes as shown in a hypothetical example below.

 Total Serious Moderate Minor

Root cause No. % No. % No. % No. %

Specification 16 17% 4 19% 6 21% 6 14%

Design

Issue
10 11%

1
5%

3
10%

6
14%

Standards 15 16% 3 14% 4 14% 8 18%

Interface 9 10% 2 10% 3 10% 4 9%

Knowledge 26 28% 6 29% 8 28% 12 27%

Data 9 10% 2 10% 3 10% 4 9%

Other 9 10% 3 14% 2 7% 4 9%

Total 94 100% 21 100% 29 100% 44 100%

Note: % calculated are rounded off for ease of understanding.

We can observe that major root cause identified in this specific project is Knowledge

(28%). So, organization should focus on improving knowledge of the people at

highest priority and then focus on Specification (17%) and standards (16%) related

128

improvements. Note that different organizations and teams may have different root

causes. But a process needs to be followed as given below.

1. Collection of quantitative defect data

2. Identification of root causes of each defect

3. Identification vital few root causes impacting most defects and then

4. Taking corrective / preventive actions on those vital few root causes for future

projects.

Defect Distribution – Shift Left

At a project or at an organization level, it is important to understand the current

distribution of total defects against each phase. It is measured in terms of % of

defects detected in a phase. So, if out of total 400 defects, 4 defects were found in

Requirements through Requirement reviews, we can say that 1% defects were found

in Requirement phase itself. Let us see overall distribution for a specific engagement

in an organization.

SDLC Phase wise % of Defects

 Requirement Design Code Testing UAT Production

Current State 1% 3% 30% 42% 18% 6%

Desire State 5% 8% 35% 40% 10% 2%

We have discussed that cost increases if the identification and fixing of defects is

delayed. Or in other words cost is higher if defect age is higher. It has been also

observed in various surveys that Requirement and Design itself contribute to very

high percentage of defects.

Based on analysis of current state as provided above, one would realize that only

4% defects identified during requirement and design phase, which is not enough.

The organization hence need to aim to shift identification of errors more towards left

side of SDLC Life cycle (shortly known as Shift – left process)

The organization would implement various processes and techniques to increase the

detection % in the initial stage. It needs to put in extra effort to review requirements

129

and design. Please also note that when more defects are found earlier in the life

cycle, the number of defects reduces in the subsequent phases and the defect

amplification effect is reduced. Therefore, the total number of defects will also reduce

due to increased effort in finding defects early.

We as a software developer should keep this in mind and put our effort accordingly

to first focusing on ensuring that our requirement understanding is clear and design

is proper before coding.

Check your Progress 3

1) What are the steps involved in statistical analysis?

2) Briefly describe why it is important to identify and remove defect from

Requirement and Design phases within those phases itself.

4.6 LET US SUM UP

Implementing standard approaches and methods for manufacturing or developing

any product can assure required quality of the product. Many independent

organizations such as IEEE, ISO and CMM have come up with standard processes

for software development also. They certify different development vendors after

evaluating such standard process implementations. This helps customer to gain

confidence on the level of quality they are going to receive. International

Organization for Standardization, a non-governmental body has also come up with

various standards named ISO-9003 for software development organization. It covers

many quality dimensions (and their sub-attributes) such as Functionality, Reliability,

Usability, Efficiency, Maintainability and Portability.

Many process oriented organizations set up independent SQA department within the

organization which will focus on various activities to ensure implementation of

various standards, define quality control processes covering Reviews and Audits,

Implementation of effective testing, Change management, vendor management,

security management and Risk management processes. These processes are

implemented through detailed SQA plan. Error and Defect collection and analysis is

done so that statistical software quality assurance can be implemented for

continuous improvement. Such analyses help in identifying vital few areas that can

130

be targeted for improvement. Some other processes such as Shift-Left can help

identifying and fixing defects early during requirement and design phases so that

total count of defects and cost of fixing defects can be reduced.

4.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

1) 3 dimensions of quality

1. Functionality,

2. Reliability,

3. Usability

2) Learnability

3) (d) Accuracy

Check your Progress 2

1) Three important activities involved as part of Quality Assurance:

1. Implementing standards,

2. Reviews and Audits,

3. Testing

2) False. Because SQA activity starts from the beginning of the project. In fact

it starts from contract itself.

3) False. SQA needs to ensures that quality mandates are incorporated in the

contracts with external vendors.

Check your Progress 3

1) Steps involved in statistical analysis?

1) Collection of quantitative defect data, -

2) Identification of root causes of each defect,

3) Identification vital few root causes impacting most defects and then

4) Taking corrective actions on those vital few root causes for future

projects.

131

2) It is important to identify and remove defect from Requirement and Design

phases within those phases itself because If we don‘t find and fix defects in

Requirement and Design phases itself, the cost of removing those defect will

increase because changes will be required in all subsequent phases. The

Requirement / Design defect can also amplify in to more defects in coding

and hence total number of defect may also increase requiring hire time and

effort to find and fix them.

4.8 REFERENCES / FURTHER READINGS

(1) SoftwareEngineering,byRogerPressman

(2) Software Engineering Principles and Practices – by Rohit Khurana

132

Block-3

Software Requirement and

Analysis Model

133

Unit 1: Requirement Engineering
Process

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Requirement Engineering Process

1.4. Requirement Elicitation

1.5. Requirement Analysis and Negotiation

1.6. Requirement Specifications

1.7. System Modeling

1.8. Validating Requirements

1.9. Requirement management

1.10. How to represent complex logic?

1.11. Let Us Sum Up

1.12. Check your Progress

1.13. Check your Progress: Possible Answers

1.14. Further Reading

1.15. Activities

1

134

1.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know various techniques to eliciting requirements

 Understand requirement analysis and negotiation

 Understand functional and non-functional requirements

 Learn how to document functional requirements

 Write good Software Requirement Specification (SRS)

 Represent complex logic using decision table and decision tree.

1.2 INTRODUCTION

The main objective of the Software Engineering is to develop, procedures or

methods for developing a software product for large systems with high quality, in

minimum or designated time period and with minimum cost. As we know Software

engineering is a consequence of a process, focuses on different elements like

analyzing, designing, implementing and organizing those elements into the form of

system. It can be anything like a product, technology or services. It is a methodology

which ensures software engineer to build, produce and deliver right things, in right

way and in right time. As we know the whole process has to be done in various

phases of software development life cycle, which starts from the feasibility study,

software requirement analysis, designing, coding, testing and finally implementing

and providing support. In this chapter we will focus on software requirement analysis

part. When the requirement of the project is initiated, software engineer has to do

detail feasibility study i.e. ‗Whether the project is feasible?‘, if yes then software

engineer has to gather required information and after analyzing all these

requirements software engineers has to document these requirements into the

proper format. All other phases like design, coding, testing is strictly following this

documentation. So, if any mistake is done by the software engineer during

requirement analysis, or if anything missed out by the software engineer during this

phase then all phases like designing, coding and testing will be affected.

Requirement gathering is a challenging task for the software engineers. In most of

the cases customer cannot give details description of the various functionality of the

135

project, because of lack of the technical knowledge or maturity level or do not having

complete knowledge. Systematic approach is needed by the software engineer to

reduce the complexity in the area of requirement analysis, it is called Requirement

Engineering.

1.3 REQUIREMENT ENGINEERING PROCESS

Requirements Engineering is the systematic use of proven principles,

techniques and language tools which provides cost effective analysis,

documentation, on-going evaluations of customer‘s need and the specification of

external behavior of a system to satisfy need of the customer. Requirement

Engineering Process can be defined as a discipline, which addresses requirements

of different objects of system development process.

The output of the requirement engineering process is the computer-based

specification or product which is described at various level. The requirement

engineering process can be described in the following steps:

 Requirement elicitation (Requirement gathering).

 Requirement analysis and negotiation

 Software Requirement Specification (SRS)

 System modelling

 Requirement validation

 Management of the requirements

1.4 REQUIREMENT ELICITING

Requirement gathering or elicitation is an art. It seems to be simple – ask the

customer, user or stakeholders of the system about the various functionalities of the

system. But it is not that much simple enough and number of problems involved in it.

Due to those problems‘ requirement gathering is becomes complex and need more

attention of the software engineer. Some of those problems are discussed below:

 Scope of the project: The boundary of the project is not clear and sometime

customer specify those details which is not there in the project scope.

136

 Unnecessary technical details: Sometimes, rather providing clear and precise

information customer provides too much technical details which may create

confusion and increase complexity.

 Problem in understanding: If the customer is not clear with specific task, or

having poor or incomplete details, then it will mislead software engineer.

 Volatility in requirement: Problem of volatility in requirement occurs when the

project requirements change over the time.

The person who gathers information should have knowledge of what, when and

how to gather information and by using which resources. The information is

gathered for the organization which includes its policies, objectives,

organizational structure, staff and all stakeholders of the organization.

The following tools are useful for the software engineer in requirement gathering.

1. Review of the Records: Here software engineer reviews the various

recorded documents of the organization. Different book in which

transactions are recorded, various procedures, forms etc. are reviewed to

gain knowledge of format and functions of current system. This is time

consuming technique.

2. On site observation: Here the software engineer visits the actual site to

get close look and understand the system properly.

3. Questionnaire: This method provides effective way to gather the

information with less effort, so engineer can produce written document

about requirements. It examines large number of respondents parallelly

and get their customized answers. It gives sufficient time to the

respondents to select the proper answer of the query.

4. Interview: Here the Software Engineer takes a personal interview with the

stakeholder of the project and identify their requirement. It requires

experience of arranging the interview, setting the stage, avoiding

arguments and evaluating the outcome.

The output produces by the requirement elicitation process can vary

depending on the scope of the system or type of the product to be built. In

most of the case the output document covers following points.

 Statement of system need and its feasibility study.

137

 Boundary of the system or product. (Things which are included and

things which are not covered in the system).

 List of stakeholders participated in the requirement gathering.

 Details of the technical environment.

 List of the requirements.

 Sometimes prototype is built to perform requirement gathering in a

better way.

1.5 REQUIREMENT ANALYSIS AND NEGOTIATION

The outcome noted of the requirement analysis, done earlier will be the input of the

requirement analysis. In the analysis each requirement which is recorded earlier will

be observed carefully and categories them into related sets. To classify requirements

into different sets the relation between the requirements are studied. At this stage

each requirement is inspected whether requirement is correct, or has some error and

it is ambiguous.

Requirements are classified in to three types on their priority.

1. Requirements which should absolutely met

2. Requirements which are highly desirable but not necessary

3. Requirements which are possible to implement but could be eliminated

Implicit & Explicit Requirements:

Explicit Requirements are those, which are specified by the customer. Those

requirements which customer can easily specify and able to give complete

description are called explicit requirements. For example, in the case of online

banking application ‗withdraw‘ or ‗deposit‘ requirements will be explicit and software

engineer gets complete details that is input, process and output about the

requirement from the customer. Where as certain requirements will not be explained

or mentioned by the customer, but they should be mentioned in the requirement

specification documentation by software engineer by their skills, it is called implicit

requirements. In the above application it is a responsibility of the software engineer

to validate the data and give proper validation messages, while someone is filling

online form. Software engineer can mention that ‗Account Number‘ should be

generated by the system automatically while new account is created, Email address

138

and phone number should be validated and so on. Such requirements will not be

specified by the customer. They are written by the software engineer to function the

system properly.

Source of Information

Source is very important in the requirement specification. Software engineer has to

visit different stakeholders of the system to gather requirements. Different

stakeholders of the system will explain different requirements and or some time the

same requirement in a different way. While writing the requirements software

engineer has to mention the source of the requirement. So, in future in any phase of

the life cycle any ambiguity is occurs, then we can easy resolve that ambiguity, if we

know the source. In such case, we can visit to the source (stakeholder of the

system), we can get more detailed specifications about the requirements and

implement in the system.

Types of Requirements:

On the basis of their functionality, requirements are classified into following two

types:

1. Functional Requirements: In the functional requirements various factors like

input-output formats of the system, their data storage structures,

computational capabilities, timing of the completion of the task and

synchronization are considered. Functional requirements cover transaction of

series of transaction which can easily expressed in the term of function. For

example, searching of a book in the Library Management System, or

withdrawing cash from the ATM system can be considered in this category.

2. Non-functional requirements: in the non-functional requirements various

factors like attributes, quality, performance, efficiency, probability, usability

and reliability is considered. Because of the non-functional requirements deals

with the attributes or characteristics of the system, they cannot be expressed

as function. Non-functional requirements focus on reliability issues, accuracy

of the result and interface between human and computer.

139

How to write Functional Require ments?

To document the functional requirement into the SRS, software engineer has to

specify set of functionalities supported by the software system. For each function

what data is essential to input, what information is produced as an output and

description about the process i.e. how the input data is processed to produce output.

Few examples are given below to clarify how functional requirements can be

document in the SRS.

Example:1 Sales in Online shopping

Requirement: 1 Sales

Description: The sales function first shows the various categories of the product.

When customer selects particular category then all the products which comes under

that category is displayed. When customer selects any of the product then details

description about the product such as product attributes, price, rating and reviews of

the product is shown. When customer selects place order option then stock of the

product is checked. If product is not there in the stock then give appropriate

message or show payment options to the user. After payment is made show invoice

details to the customer.

Requirement 1.1 Select category

Input: Category

Output: All products belongs to selected category

Requirement 1.2 Select product

Input: Product

Output: Details description, price, rating, feedback and buy option

Requirement 1.3 Select Buy option

Input: Product

Output: Check the stock of the product. Give suitable message if product is not

available. Provide payment options if available.

Requirement 1.4 Select Payment option

Input: Payment details (Type of Payment, Card details, OTP, etc.)

Output: If payment is done successfully, show invoice details else display error
message.

140

Example:2 Search Availability of the book in Library

Requirement: 2 search books

Description: When the user selects the ‗search book‘ option, user would be prompted

to enter key words. When user click on search button after entering keywords,

system would search the book in the database and all the books whose title or name

of the author matched with the keyword entered by the user and details are

displayed to the user. The book details include title of the book, name of the

author(s), ISBN number, catalog number and location in the library.

Requirement 2.1 Select option search

Input: ‗search‘ option

Output: user is instructed to input key words

Requirement 2.2 Search

Input: Keywords

Output: Title of the book, Author name(s), ISBN number, Catalog number, Location

of the book in the library

Negotiation:

It is also possible that different users of system, suggest different requirements

because they always work with limited business resource and it also not possible for

the software engineer to fulfil all the requirements. The system engineer must

resolve such conflicts by as process of negotiation. Customer or the stakeholder of

the system are asked to rank their requirements on the basis of priority and on the

basis of it conflicts in the requirements can be discussed or negotiated.

1.6 REQUIREMENT SPECIFICATIONS

In the software system, specification means different things to different people. A

System Requirement Specification can be a written document, diagrams, a

mathematical model, prototype or combination of any of these.

Some suggest that the requirement specification has to be written in the

specific format and some standard templet has to be there, so that it will become

141

clear, precise, consistent and easy to understand. But sometime it necessary to be

flexible in it. The system requirement specification is the final output produce by

software engineer after requirement gathering and analysis. System designer will

use this document to design the system. Not only in the design but the functional

requirements will helpful to code the system. In fact, this document is also important

in implementation and testing and maintain the system. If any dispute occurs in the

future related to the fulfillment of the requirement, then it can be resolved using this

document.

As this is very important document, used in all later phases of the system

development life cycle and includes all the functional and non-functional requirement

of the customer, it should be clear, concise, consistent, correct, unambiguous and

complete document.

The outline of the SRS document is given below:

1. Introduction

1.1. Purpose

1.2. Scope

1.3. Definition, acronyms and abbreviations

1.4. References

1.5. Overview

2. Overall description of the Product

2.1. Description of product

2.2. Environmental characteristics

2.2.1. Hardware

2.2.2. Software

2.2.3. People

2.3. Functions of the product

2.4. Characteristics of the user

2.5. Constraints if any

2.6. Dependencies and Assumptions made any

2.7. Goal of implementation

3. Requirement Specification

3.1. Input output interfaces

142

3.2. Functional and non-functional requirements

3.3. Performance requirements

3.4. Logical database requirements

3.5. Design constraints

3.6. Software system attributes

3.7. Behavioral Description

3.7.1. System states

3.7.2. Events and actions

3.8. Organizing the specific requirements

3.9. Additional comments

4. Supporting information

4.1. Index or Table of contents

4.2. Appendixes

Properties of Writing Good SRS:

Infect, writing good SRS document is skill and can be achieved by experience. If the

analyst keeps the following properties of SRS in mind, then good quality of SRS can

be written.

1. Concise: SRS document has to be concise, unambiguous, and complete.

Conflicting and information which are not relevant are to be removed and

document has to be readable.

2. Well structured: SRS document has to be well structured and it has to be in

proper format as we have discussed above. Structured SRS is easy to

understand.

3. Black-box View: Analyst has to take of writing only black-box view of the

procedures, which only focuses on what system will do and not how system

will do. Only the input data format available and output information format to

be produced is discussed. This property insists analyst has to write only

external view of procedure.

4. Verifiable: Here the analyst has to verify, implementation of each requirement

is possible (feasible) or not. Those requirements which are not possible to

implement are listed separately in the goal of implement section of the SRS

document.

143

Problems in writing good SRS

There are some problems, from which SRS document may suffer, which are

discussed below:

1. Over-specification: Here too much specification details are given to particular

functionality, which makes document more complex and ambiguous. This

problem will occur when analyst writes ‗how to‘ aspects of the problem.

2. Forward referencing: The document should not have too much forward

referencing (Reference to the points are discussed much later). This

decreases readability of the document.

1.7 SYSTEM MODELING

Assume for a while, if all the required components, parts and instruments are given

to an automobile engineer, he will simply arrange the related components and parts

and prepare model of a vehicle. It is nothing but a blueprint or 3D rendering which

describes position of each instrument or component of a vehicle. System modelling

is similar to this. After requirement gathering and analyzing a system model is

prepared which shows how the requirements will fit into the system. Here the

relations between the requirements are focused and model of the system will be

prepared.

1.8 VALIDATING REQUIREMENTS

In the requirement validation, requirement which are gathered and analyzed are

assessed for quality. In this process each requirement is examines the specification

to ensure that all system requirements have been stated in the SRS are valid or not.

By mean of validating requirements, any inconsistent, unclear, unrealistic or

unachievable requirements filtered out and resolved. As outcome of requirement

validation, we have only unambiguous requirements in the SRS document.

To validate requirements following questions has to asked:

 Are requirements described clearly? Can they be misinterpreted?

 Is requirement source identifiable? Outcome has been examined against the

source?

144

 Can we bound the requirements to quantitative terms?

 Is any requirement violating any domain constraints?

 Can we test the requirement?

 Is the requirement traceable to any system model or objective?

 Is the requirement do affect the system performance?

 Is the requirement described in the proper format?

Checklist questions of the above questions for each requirement stated in the SRS

document will help software engineer to validate requirements.

1.9 REQUIREMENT MANAGEMENT

During the life cycle of the computer based (Software) system, requirement may

change frequently and that desire to change in the SRS document. Requirement

management is a set of activities that help the software engineer to identify, control

and track requirements and changes to requirements at any time as the project

proceeds.

1.10 HOW TO REPRESENT COMPLEX LOGIC

If the SRS is carefully designed, then all the conditions will be properly characterized

in it. However, some conditions are complex, and more interactions and processing

sequences are needed. It is difficult to describe complex conditions into the textual

format. It is also not possible to check large number of alternatives it the complex

condition is written in plain text format. In such cases, decision table or decision tree

can be used. Decision table and Decision tree is helpful to describe such complex

conditions having large number of alternatives.

Decision Tree:

Decision tree is used to graphically represent the complex condition with all its

alternatives and action taken corresponding to each alternative in hierarchical

manner. Decision tree show the logic structure in a horizontal form that resembles a

tree with the roots at the left and branches to the right. Same as flowchart, decision

tree is also useful way to represent complex functions of the system. Decision table

145

and decision tree represent the same thing. Just decision tree represents all

alternatives in hierarchical way, which is easier for the programmer to understand.

Decision Table

Decision Table shows a complex logical structure, with all possible conditions, and

resulting action in the tabular form. It represents the decision-making logic and its

corresponding action taken in the matrix form. The upper row of the decision table

shows conditions to be evaluated and the lower rows represent actions to be taken.

Column of the table is known as rule. If the condition is TRUE then rule will be

enforced and if it FALSE then rule will not be enforced.

Consider the following example. Based on the scenario described in it we draw the

decision tree and make decision table.

Example: 1

Consider SALES PROMOTION POLYCY of the company. Company is offering 2%

discount to non-prime customers. If the customer is prime then 5% discount will be

given. If any prime customer gives order more than Rs. 5000 then 10% discount is

given. If any prime customer places the order of more than Rs 5000 and doing the

payment using card then addition 2% discount (12% discount) will be given.

Figure: 3.1 Decision Tree for the case discussed in example1

146

 1 2 3 4 5 6 7 8

Prime Customer
Order more than Rs. 5000
Payment made by card?

Y
Y
Y

Y
Y
N

Y
N
Y

Y
N
N

N
Y
Y

N
Y
N

N
N
Y

N
N
N

2% Discount
5% Discount
10%Discount
Additional 2% Discount

X
X

X

X

X
X X X X

Table:3.1 Decision Table for the case discussed in example1

1.11 LET US SUM UP

In this chapter we have learnt how requirement can be gather from the customer,

how can we analyse and validate them. We have also discussed that what are

functional and non-functional requirement and how can we write functional

requirements. We have seen what is SRS document? What is the user of SRS

documents and attributes of good SRS document? Finally, we have learnt how to

represent complex logic using decision tree and decision table. We hope, now

student will have sufficient idea of how to gather, analyse, document requirement in

proper format.

1.12 CHECK YOUR PROGRESS

Fill in the blanks

1. represents graphical representation of the complex logic structure.

2. In the decision table upper rows represent and lower rows represents

 .

3. After requirement gathering and analyzing, work flow is used to

prepare a blueprint or 3D rendering of the system.

4. is used to resolve conflicting requirements.

5. work flow is a process, in which analyst will check each requirement

whether its implementation is possible or not.

1.13 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check Your Progress: 1

147

1. Decision Tree

2. Conditions, Actions

3. System Modeling

4. Negotiation

5. Requirement Validation

1.14 FURTHER READING

1. Software Engineering – A Practitioner‘s Approach by Roger S. Pressman

(Mc Graw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)

3. System Analysis and Design Methods by Gary B. Shelly, Thomas J.

Cashman, Harry J. Rosenblatt (CENGAGE Learning)

1.15 ACTIVITIES

1. Assume a library automation system, where number of books are there in the

library and various members can borrow books (not more than 3 at a time).

Members can keep the book with them for maximum 21 days, and they need

to return the book(s). If any member fails to return the book(s) within

designated time period Rs.1/- per day fine has to pay by the user. Fine

amount should not more than 5000/-. Every member needs to renew the

membership with Rs. 1500/-. Initial membership (Registration) charge is

2500/-. Write functional requirements for the case described above. Make

suitable assumption when needed.

2. Write SRS document of any online shopping website system. Make suitable

assumptions for the various functionalities of the system.

148

Unit 2: Structured Analysis
Modeling

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. Structured Analysis

2.4. Data Flow Diagram (DFD)

2.5. Example of DFD

2.6. Entity Relationship Diagram (ERD)

2.7. Types of relationships

2.8. Example of ERD

2.9. Let‘s sum up

2.10. Check your Progress

2.11. Check your Progress: Possible Answers

2.12. Further Reading

2.13. Activities

2

149

2.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know different method of analysis

 Understand structured analysis in details

 Draw data flow diagram of the system

 Learn basic terms related to database management system

 Understand different types of relations

 Draw entity relationship diagram of any system

2.2 INTRODUCTION

As we have seen in the previous chapter that modeling is a method to transform

textual description of the problem into the graphical representation. After the

requirement gathering, analyzing and validating we have all clear, concise,

implementable and non-conflicting requirements in the textual format. In the analysis

model those requirements are translated into the graphical model in the form of

various diagrams.

Analysis modeling can be done by two methods:

1. Structured Analysis

2. Object Oriented Analysis

2.3 STRUCTURED ANALYSIS

Structured Analysis is a classical analysis modeling method. It follows function-

oriented methodology to carry out top-down approach to decompose the set of high-

level function represented in the problem definition and represents then graphically.

In this method, system is decomposed into various functions. That is, each function

that system performs is analyzed and decomposed into more detailed functions. For

example, function ‗Mange Sales‘ can be decomposed into ‗Sales Order‘, ‗Sales‘,

‗Payment‘ and ‗Sales return‘. For Structured Analysis following principles are

essential.

 Structured Analysis is based on Top-down decomposition approach

150

 It uses Divide and conquer principle, as each function is independently

decomposed.

 Result of the structured analysis is Data Flow Diagram (DFD).

2.4 DATA FLOW DIAGRAM (DFD)

A Data Flow Diagram (DFD) is as hierarchical graphical model, represents the

whole system that is decomposed into number of functions. In the DFD each function

is a processing station (process), and data flow between entity and process, as well

as data flow between process and data stored are represented in the graphical form.

DFD is also known and bubble chart. DFD uses limited number of symbols which are

denoted in the following table.

Sr.
No.

Symbol
(De Marco &

Yourdon
Notation)

Symbol
(Gane &
Sarson
Notation)

Explanation

1 Process symbol receives input from the

data, process it and produce output.

 Output may be processed data in the

 different format or content. Process may

0
be simple or complex. Process contains

 0 business logic or business rules. Process

Process Process name appears in the circle (Yourdon

 Notation) or Rounded rectangle (Gane &

 Sarson Notation). Process denotes

action or functionality so usually its name

 should be verb. For example, Manage

 Sales, Issue Book, Renew Book etc.

2 The rectangle (Yourdan Notation) and

 shaded rectangle (Gane & Sarson

 Notation) is used to represent entity.

 Name of the Entity appears inside the

 External

Entity
External

Entity

rectangle. DFD shows only external

entities which interact with system and

 provides data to the system or retrieves

151

 information from the system. For

example, Customer, Supplier, Student,

Teacher etc. are the example of the

entities. Entities are also called

terminators because the original source

of the data as well as final destination for

the information (processed data)

3

Data Store

D1 Data Store

DFD uses data stores to represent the

data is stored in the system for future

use. If a process stores the data then

that can be used by the same or another

process. Data store represents a kind of

data table(s) of database. For example,

in the online examination system, each

user response is recorded in the

user_response table, which will be

retrieve and matched with correct options

in result generation process.

4

Data flow indicates path of the data to

move from one end of the system to

another end. Data flows are indicated in

the DFD by arrow, and which data is

flowing by the arrow is indicated by a

label on it. Usually data are noun, and

therefore the label or caption on the

arrow has to be noun. For example,

Customer details, Book details, Product

details etc.

In the DFD, what process takes as input and what is generated by the

process as an output is described. But how the data is being processed or logic of

the process is not described so DFD is a black box view of the system.

152

How to draw DFD:

DFD model represent flow of the data graphically and in hierarchical manner

of the levels. DFD always starts with most abstracted view (low level) of the system

and then at each higher level more details are introduced successively. When most

abstracted view of the system is presented in the DFD, it is called context level DFD

diagram.

1. Context DFD Diagram: As we have discussed context level DFD represent

most abstracted view of the system, it has only one process that represents

whole system. All the entities who interact with the system are shown in the

DFD and their interactions with the system is shown by data flow arrow. The

context diagram is called 0 level diagram. Because of context level DFD is

most abstract level and represents whole system, all entities and their

interactions, it becomes more complex. So, in the context level DFD, no data

store is shown.

2. 1st Level DFD: To develop the 1st level DFD, examine the high-level

functional requirements. If there are 3 to 7 high-level functional requirements

are there, then that can be represented in the 1st level DFD. If more than 7

high-level functional requirements are there then similar types of functional

requirements are merged into one and that can be separated in the 2nd level

DFD.

3. 2nd Level DFD: Those functional requirements which can be separated in the

1st level but due to the restriction that maximum 3 to 7 processes can be

shown in the 1st level DFD are separated in the 2nd level.

So, we can assume that context level DFD is nothing but whole system. In the

1st level DFD we divide the whole system into 3 to 7 different modules, and each

module represented in the 1st

reports.

Process Numbering:

level is again divided into number of forms and

It is necessary to number the different processes of DFD to uniformly identify all

processes. The process at context level is usually assigned the number 0, to indicate

it is 0-Level DFD. Processes at 1st level DFD are numbered 0.1, 0.2, 0.3 and so on.

153

MANAGE

SALES

CALCULATE

CALCULATE

Suppose process 0.2 is further decomposed in to 3 more processes then 2nd level

DFD of process 0.2 is numbered as 0.2.1, 0.2.2 and 0.2.2 and so on.

Rules of drawing DFD:

1. Context level DFD has only one process that represents entire system. All

entities should be present in the context level DFD, and no data store is there

in the context level DFD.

2. Name of the processes are usually verb as they indicate functionality (some

action to be performed) and name of the data flow (arrow) should be noun.

3. Data flow from one entity to another entity is not possible.

4. Data flow from entity to data store is also invalid. Usually entity submit the

data to the process and process will store the data in the data tables.

5. No process should be there in the DFD, which has only outgoing edges. If the

process has only outgoing edges and no incoming edge then it is called a

problem Spontaneous generation.

INVOICE SALES DETAILS

6. No process should be there in the DFD, which has only incoming edges. If the

process has only incoming edges and no outgoing edge then it is called a

problem Black hole.

WORKING DAYS EMPLOYEE DETAILS

7. If the process of the DFD has one input and one output, but the input is not

sufficient to produce output then that problem is called Gray hole

Such type of process should not be there in the DFD.

problem.

DATE OF BIRTH FINAL GRADE

154

8. When we change the level of the DFD then data flow in to the process and

data flow out from the process should be same. That means when we draw

the next level DFD then number of data items in and number of data items out

should match with the parent process. Number of in or out data elements

should not be increased or decreased. It is also called balancing DFD.

9. Arrows of the DFD should not cross each other.

10. We can repeat the Entity or Data table, but these repeated objects have cross

line on the top-left side.

2.5 DFD OF A SCHOOL MANAGEMENT SYSTEM

Here we have represented a Data flow diagram of the school management system.

Student gets enrolled in the school by filling registration form. Student pay the fees

on regular interval. Fees details are managed by the office clerk. Student gives

examination and result will be prepared by the teachers. School also has library,

from which students can issue the book. Library system handles by librarian. School

also provides Transportation system. Overall system managed by Administrator.

Context diagram of the school management system is shown below. Which has 6

entities Student, Faculty, Admin, Librarian, Driver, and Clerk. They interact with

school management system.

Note: Usually all the first level processes have to be drawn as a single
diagram, where only one instance of each entity and data table is placed. But,
because of it increases complexity and reduce printing clarity we have shown
each first level process separately. If the system is smaller and all first level
processes can be accommodated in a page then it is preferable that you draw
a single first level DFD which accommodate all the 1st level processes in a
diagram.

155

Login & Rights Allocation (1st – LEVEL):

156

This is the 1st process of the 1st Level DFD. Different users can log into the system

and based on their role system will give privileges to the user. The process is

complex and its 2nd level decomposition is required. Its 2nd level DFD is represented

in the next figure.

Login & Rights Allocation (Expansion-2nd LEVEL):

157

Here the whole login process we have decomposed into Create user, Rights

allocation, Verify login (Authentication) and Change password. Our next process is to

record details for all our master tables in the database. The process is simple

enough, hence second level transformation is not needed.

Master Maintenance (1st – LEVEL):

158

The next process is Admission process (1st Level) which we have further

decomposed into Registration, and Student enrolment.

Admission (1st – LEVEL):

159

Admission Expansion (2nd – LEVEL):

Next 2 processes are Record fees, and Record attendance. The Process is simple

and no further expansion is needed. So, we leave this process at 1st level only.

Record Fees (1st – LEVEL)::

160

Record Student Attendance (1st – LEVEL):

Next process is Library management. Because this process needs to be

decomposed into be decomposed into Check availability, Book Issue and Book

Return in the 2nd level of DFD.

Manage Library (1st – LEVEL):

161

Manage Library (Expansion 2nd - LEVEL):

Next process is to Record Marks in which Faculty will entered the marks of the

students. Here faculty refers the Student, Subject and Exam tables and marks will be

recorded in the Result table.

Record Marks (1st – LEVEL):

162

In the same way one process for making schedule of the exam and class, and one

more process for generating reports can be made. I think by studying this data flow

diagram students will have sufficient knowledge of how to make DFD. In our

example we have followed Gane & Sarson Notations. But you can also use Nordan

notations too.

2.6 ENTITY RELATIONSHIP DIAGRAM

Data flow diagram represents the black box view of the system. It represents the

front-end part of the system. To represents the back-end part (Database) in the

structured analysis we use Entity Relationship (ER) Diagram. ER diagram is detailed

logical representation of data for an organization. It is data-oriented model, while

DFD is function-oriented model of the system. ER diagram represents data while

DFD represents flow of the data.

Before going into the detail of how an ER diagram can be prepared, we discuss

several terms related to the ER diagram, which makes learning process much

easier.

1. Data: Data is unstructured row material and unstructured facts, which

provides necessary input to the computer system.

163

2. Attributes: Attributes are properties or characteristics on an entity. It is

represented by an oval in the ER diagram.

3. Entity: It is an important elementary thing of an organization about which data

is to be maintained. In the ER diagram entities are represented by rectangular

box.

4. Data tables: In the Database, data having similar attributes are stored as

single unit called data table. For example, Student is an entity and all

attributes which is related to the student like (Roll number, Name, Address,

Phone number etc.). In the Relational database Management System

(RDBMS) data table can be an entity or relation between two entity.

5. Master Table: Those tables having data of the permanent type are called

master tables. Master tables are those tables which are used frequently but

updated (insert, update, delete) very rarely.

6. Transaction Table: Transaction tables usually record those data which are

not of permanent type, it is useful to store day to day transactions. Those

tables in the database which are used rarely but update frequently are called

transaction tables.

7. Primary Key: Primary key is a column of the data table which uniquely

identify each row of the table. Once the primary key is given on any field or

column of the data table then it will not accept null and duplicate values.

8. Foreign key: Foreign key is a key column which is Primary key in another

table or relation.

9. Composite key: Primary key given on more than one field is called

composite key. Here more than one fields, uniquely identify each and every

row in the table.

10. Relationship: In RDBMS, entities are connected to each other by

relationships. It shows how two entities are associated. A diamond notation is

used to represent relationship and name of the relation is mentioned in the

diamond. Entity types that participate in relationship is called degree of the

relationship.

11. Cardinality & Optionally: The cardinality represents the relationship between

two entities. If we consider relationship between state and city, then it is one-

to-many relation is there (one state has many cities). Here, cardinality of a

relation is the number of instances of entity city that can be associated with

164

Name Capital

CountryCode PK CountryCode PK,FK1

Capital Country

each instance of entity state. In the situation where there can be no instance

of second entity, then it is called optional relation.

2.7 TYPES OF RELATIONSHIPS

There are three types of relationships are there.

1. One-to-One

2. One-to-Many

3. Many-to-Many

A One-to-One or 1:1 exists when exactly one of the second entity occurs for each

instance of the first entity. For example, if we take county as first entity and capital as

second entity then the relation is one-to-one relation that means one country has

only one capital.

A One-to-Many or 1:M exists when one occurrence of the first entity relates to the

many instances of the second entity. For example, one department has many

employees. In this example DeptCode is common attribute. DeptCode is primary key

in Department table and Foreign key in the Employee table.

Here the cardinality is one department has zero or more employee. In the above

diagram relationship with dotted line indicates week entity relationship. Consider

another one-to-many relation between Employee and Salary. Employee gets salary

every month (one-to-many). EmpCode is a common attribute between Employee

table and salary table. EmpCode is primary key in Employee table and foreign key in

the Salary table, not only that but in the Salary table EmpCode, Month, Year are

165

Department

PK DeptCode

 DeptName

Salary

PK,FK1

PK

PK

EmpCode

Month

Year

 Basic

HRA

DA

composite primary key. That means duplication in these three field is not allowed.

Either EmpCode or Month or Year any one attribute has to be change (One

employee in the same month and year cannot get more than one salary).

A Many-to-Many relationship (M: N) exists when one instance of the first entity

relates with many instances of the second entity, and also one instance of the

second entity relates with many instances of the first entity. For example, Book and

Author is the example of many-to-many relationship. One book can be written by

many authors, and one author can write many books.

Book_Author

PK,FK1

PK,FK2

BookCode

AuthorID

In one-to-one relation we can merge two tables into one for example in the example

of Country and Capital, both tables can be merged into one i.e. Country

(CountryCode, CountryName, Capital). In the one-to-many relation two tables are

needed. Similarly, in many-to-many relation three tables are there.

2.8 EXAMPLE OF ER-DIAGRAM

Consider an example of ‗Online Sales System‘. Company has different

category of products. One category may have many products. One product can have

many features. Similarly, one feature can be there in the many products. One can

place many orders and one order can have many products. We are restricting our

discussion here make the example easier and having less complexity. Students can

include supplier and purchase details, product feedback, rating, sales and purchase

return etc.

Employee

PK EmpCode

EmpName

Address

PHNo

FK1 DeptCode

166

2.9 LET US SUM UP

In this chapter we have seen that analysis can be done in two ways. (1) Structured

analysis and (2) Object-oriented analysis. In the structured analysis, analyst draws

data flow diagram to represent the flow of the data, and Entity Relationship diagram

to represent how to store data in the system. We hope, after learning this chapter

student can make ER-diagram and DFD of any of the system.

2.10 CHECK YOUR PROGRESS

Fill in the blanks

1. Primary keys given on more than one field is called .

2. Relationship between Country and President is .

3. Types of the relationships are , , and .

4. In the DFD, Entity can be denoted by symbol.

5. symbol is used to denote process in the DFD in Yourdon notation.

6. In the ER-Diagram attributes can be represented by .

2.11 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

167

Fill in the blanks

1. Composite key

2. One-to-One

3. One-to-One, One-to-Many, Many-to-Many

4. rectangle

5. Circle

6. oval

2.12 FURTHER READING

1. Software Engineering – A Practitioner‘s Approach by Roger S. Pressman

(Mc Graw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)

3. System Analysis and Design Methods by Gary B. Shelly, Thomas J.

Cashman, Harry J. Rosenblatt (CENGAGE Learning)

2.13 ACTIVITIES

1. Draw a data flow diagram of ‗Online Sales System‘.

2. Draw an ER diagram for ‗School Management System‘.

Unit 3: Object Oriented Analysis
and Design

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Basic terms of Object-oriented analysis

3.4. UML Diagrams

3.5. Use-case diagrams

3.6. Class diagrams

3.7. Sequence diagrams

3.8. Examples of UML diagrams

3.9. Requirement management

3.10. Analysis Modeling

3.11. Let‘s sum up

3.12. Check your Progress

3.13. Check your Progress: Possible Answers

3.14. Further Reading

3.15. Activities

168

3

169

3.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know How object-oriented analysis can be done

 Understand basic terms related to object oriented technology

 Understand object oriented design and use of UML diagram

 How to draw different kind of UML diagrams

 Know how the quality software product can be designed

3.2 INTRODUCTION

In the previous chapter we have seen that analyst can do the analysis of the system

using any of the method from (1) Structured analysis or (2) Object-oriented analysis.

In the previous chapter we have seen that, if structured analysis is used then data

flow diagram and entity relationship diagram are the basic tools. In this chapter we

will focus on object-oriented analysis.

Object-oriented technology is extremely popular now a day. In this section we will

focus on some basic concepts of object-oriented analysis. We will focus on UML

(Unified Modeling Language) which is a standard of object-oriented systems. Before

we start to do object-oriented analysis, and learn how to design UML diagrams, first

we will focus on some important keywords of object-oriented system.

3.3 BASIC TERMS OF OBJECT ORIENTED ANALYSIS

OBJECT:

Object is a tangible entity of the real world. Usually object has its data is known as

property of the object, and in the same way object can perform some action, which

known as method of the object. Normally one object cannot access the data of

another object. Object itself can use its own private data. Object can be anything,

any real entity which has something (properties or attributes) and it can do

something (methods). For example, customer of bank is an object. Customer Id,

Name, Account No, Balance are the properties of the customer object, where the

170

action performed by the customer such as withdraw or deposit are the methods of

customer. Similarly, students, teachers, accountants are the example of objects.

CLASS:

Similar objects constitute a class. Those objects possessing similar properties and

having similar behavior form a class. Class is a kind of template, which represent

object. Class have variables and functions. Object is an instance of the class. When

the object is initiated, from the class then variables declared in the class will become

properties of the object and functions written in the class will becomes methods of

the object. Classes are also known as Abstract Data Types (ADTs).

ABSTRACTION:

The process of identifying properties and methods of an object is called abstraction.

Abstraction is the selective examination of certain aspects of a problem while

ignoring the remaining aspects of the problem. In another way, abstraction is the

process by which we concentrate on those aspects of the problem which are

relevant and suppressed which are not relevant.

ENCAPSULATION:

Encapsulation is a technique in which data (properties) of the class and functions

(methods) are packaged together as a single unit, and data can be accessible by the

outsiders through the methods only. Encapsulation provides black box view to the

class, where outsiders (non-member functions of the class) are not allowed to

access the data directly. In the class variables (properties or data) are kept in the

private sections, so that only those methods written in the class can access it. If any

other function wants to access it, they need to call the method of the class, which

verify the request. If the request is valid then and then the data will be provided by

the method to the outsider function. So basically, encapsulation provides security to

the data from the outside world.

POLYMORPHISM:

Polymorphism means more forms of the same thing. An operation may exhibit

different behaviors in different instances. Function overloading and operator

overloading features of an object-oriented programming languages are kind of

Polymorphism. Two or more functions having same name, can be separated by a

171

system at run time by looking to number of argument passed or types of argument

passed. Here we have different functions and same name, that is polymorphism.

Polymorphism is increase readability of the program. For example, if we have 2

functions to do sum of integer numbers and another function to do sum of float

numbers. Because of the behavior of the function is same (doing sum) we can give

same name ‗sum‘ to both the function in object-oriented programming languages like

C++, Java, C# etc., and we do not have to give different names like sum and sum1

like C-language.

INHERITANCE:

Inheritance is the process by which we can derive a new class from the existing

class. Existing class will act as base or parent class, and new class which generated

from the base class is called child or derived class. Derived class can automatically

have properties and methods of the base class, so we do not have to define those

properties which are in the base class, again in the derived class. Inheritance

provides reusability of the code (Code written in the base class can be accessible in

the derive class).

3.4 OBJECT ORIENTED ANALYSIS AND DESIGN

Object-oriented analysis:

Object-oriented analysis focus on examine at the problem domain, with the

intension of producing a conceptual model of the information gathered in the

preliminary investigation, feasibility study and requirement gathering phases of the

SDLC, are being examined. Analysis model do not focus on implementation part, or

how system is to be built. Analysis has to be done before the design.

Written problem statement or formal vision document is the source of the

analysis. A system may have divided into multiple domains, representing different

business, technologies, or other interest areas. The result of the object-oriented

analysis is functional requirements in the conceptual model.

Object-oriented design:

If we consider analysis to be a definition of the problem, then design is the

process of defining the solution. Object-oriented design process defines the

components, classes, objects, properties, methods and interfaces which satisfies

172

functional requirement of the system. OOD transforms the conceptual level model

produced by analysis into the environmental or technical model.

3.5 UML DIAGRAMS:

Unified Modeling Language (UML) consists of different types of diagrams. Each

diagram focuses on different way to define and analyze the system. These diagrams

are:

1. Class diagram: It represents different classes and relationships among them

of the system. Class consist of properties and methods.

2. Object diagrams: Objects are the instances of the class. Object diagram

represents the relationships among the various objects of the system. One

class diagram can have multiple object diagrams.

3. Use-case diagram: Use-case represents external behavior of the system. A

use-case diagram consists of various actions and their interactions with

different people.

4. Sequence diagram: Sequence diagram represents interactions between

users over time period. A sequence diagram is detail behavior with respect to

the time of each action of use-case diagram. Means for each action shown in

the use-case diagram, a separate sequence diagram has to be designed.

5. Collaboration diagram: Collaboration diagram represents the interactions of

objects of the system with respect to the relationships among the objects.

6. State-chart diagram: State-chart diagram represents various states of the

system in response to the events triggered by the user. A state-chart diagram

shows, how the state of the system changes in response to the internal or

external events.

7. Activity diagram: Activity diagram represents elaboration of the behavior of

the system. Activity diagram shows details behavior of the single function.

3.6 USE CASE DIAGRAM

Use-case diagram provides a fast and simple way to describe the purpose of

the project. Recently it is employed by many software engineers, to record high-level

objectives of the project in its initial phase of development.

Use-case diagram is used to identifies different processes as well as primary

elements of the system. The primary elements are also known as actors and

173

processes of the system are called use-cases. Use-case diagram shows how the

different actors interact with the different use-cases of the system.

Use-case diagram focuses on functional requirements of the system. It

represents the graphical view of the system functionalities (use-cases) and users

(actors).

ELEMENTS OF USE-CASE DIAGRAM :

It is easier to design use-case diagram, if we have proper knowledge of its different

elements. The elements of the use-case diagrams are:

1. Actors

2. Use-Case

3. Relationship between Actor and Use-case

4. Relationship between Use-cases

5. Relationship between Actors

6. System boundary.

Sr.

No.

Symbol Description

1

Customer

Actors: An actor can be a user or role which interact with the

system by invoking different use-cases of the system. Usually

Actor can be human, a hardware device, or another system

which operates the functionalities of the system. Actors are

external to the system. Actor may provide data or get

information from the system by interacting with different use-

cases.

2

Place Order

Use-Cases: It represents set of sequences of actions that

system performs. A use-case describes what a system, sub-

system, class or interface does, but not describe how it does.

3 Relationship between Actor and Use-cases: Relationship between the

Actor and Use-case is communication between the instance of Actor and

instance of the Use-case. It is represented by a straight line between the

participating Actor and requested Use-case.

174

Place Order

* *

Customer

Customer place order

4 Relationship between Use-cases: There are two relationships are there

between Use-Cases:

[1] Uses / Includes: An Uses / Include relationship between two use-cases

means that the sequence of behaviors described in the sub (or included)

use-case is included in the sequence of the base (including) use-case. For

example, customer can ‗Withdraw cash‘ or ‗Deposit cash‘, but in both the

cases Account has to be updated.

Withdraw Cash «uses»

*
Update Account

*
* «uses»

Customer Deposite Cash

*

Use-cases Withdraw Case and Deposit Cash includes Use-case Update Account

Note: Uses / Includes indicate compulsion. In the case of withdraw or deposit account

updating is mandatory(Compulsory) sub Use-case.

[2] Extends: Extend is basically use to extend the functionality if one Use-

case by another. For example, in the case of Authentication if any error is

there then it must be logged. Make sure here the sub Use-case will perform

if error occurs. If Authentication done successfully then sub Use-case ‗log

error‘ will not perform. Thus extended Use-cases are optional.

175

Log Errors

«extends»

Authentication

* *

Customer

Use-case ‘Authentication’ extends sub Use-case ‘Log Errors’

5 Relationships between Actors: Some time different Actors of the system

has to be generalized into one Actor. It is useful while the roles of different

Actors are overlapping.

Employee

Clerk Manager

Generalization

6 System Boundary: System boundary is a rectangular box, which

represents whole system. All the Use-cases are inside this rectangle box, to

denote Use-cases are in the system. Actors are the external entities so they

are placed outside of the system (rectangle).

3.7 CLASS DIAGRAMS

Based on the purpose, class diagram can be designed of 2 types: (1) Analysis class

diagram or (2) Design class diagram. Analysis model provides just provides overview

of the class, that is names of the properties and methods. Whereas, Design model

represents properties with its data type, and methods with arguments and its return

type. So, Design class diagram is more detailed version of the class diagram.

176

Analysis Class Diagram Design Class Diagram

 Order Order

-OrderID

-OrderDate

-DeliveryDate

-OrderID : Integer

-OrderDate : Date

-DeliveryDate : Date
+CalculateTotal()

+CalculateGST()
+CaculateTotal() : Single

+CalulateGST(in Total : Integer) : Single

ELEMENTS OF CLASS DIAGRAM:

1. Class: As we have seen in the above example in the class diagram class is

represented as a rectangle divided in the sections. First section shows the

name of the class. Second section shows the attributes of the class and third

section shows methods of the class.

2. Relationships: Different types of relationships are described below:

Association

Physical or conceptual connections between the classes can be represented as

association (simple line). It corresponds to a verb like teaches, work for, manages

etc. Association can be Unidirectional, Bidirectional or Reflexive.

177

Generalization:

Generalization is process of creating base class If two or more classes have

common attributes or methods. Common attributes and method are placed in the

generalized class (base class). For example, student class has attributes, Name,

DOB, Address, Email, Phone number, Roll No, course etc. and Faculty class has

attributes Name, DOB, Address, Phone number, Department, Salary etc. Then

generalized class Person can be created with common attribute. Base class

(Person) and derived classes (Student and Faculty) has ‗is a‘ relationship. For

example, every student and faculty is a person. Generalization can be

represented by symbol:

Generalization relationship

Person

-Name : String

-DOB : Date

-Address : String

-Email : String

-PhoneNo : Long

 Faculty

-Department : String

-Salary : Integer

Example of Generalization

Aggregation:

The relationship between aggregated object and its components can be

described as aggregation. Aggregation is a kind of association. Aggregation can

be represented by symbol:

Aggregation relationship

-RollNo : Integer

-Course : String

Student

178

Example of Aggregation relationship (Car made by While Engine etc.)

Composition:

When multiple instances of the same class represent another class then

composition is used. The difference between Aggregation and Composition is in

aggregation multiple instances of different class represent another class,

whereas in composition multiple instances of same class. It is represented by:

Composition Relation

Example of Composition

Multiplicity:

Multiplicity notation is placed near ends of the relationship. It shows how the

instances of one class are linked instances of another class.

Indicator Meaning

0..1 Zero or one

1 One only

0..* Zero or more

* Zero or more

1..* One or more

3 Three only

0..5 Zero to Five
5..15 Five to Fifteen

2,4 Two or Four

For example, one company can have one or more employees can be

represented as:

179

3.8 SEQUENCE DIAGRAM

A sequence diagram is used to express each Use-case in details with respect to

time. A sequence diagram represents the sequence of actions occurs in a Use-case,

and order of each action with respect to time.

ELEMENTS OF SEQUNCE DIAGRAM :

The following elements are used to draw the sequence diagram.

Life Lines:

Lifeline represents role or instances which participate in the sequence of

interactions. Lifelines are drawn as a rectangle with a dashed vertical line from the

center of the rectangle. Inside the rectangle name of the class, name of the instance

or both can be specified.

Messages:

.

Lifeline of the Sequence diagram

Message defines a kind of integration between instances (Actor or Lifeline).

Communication (message passing) can invoke by mean of function calls. It is shown

in the following figure:

Message passing between Lifelines

180

The condition placed in the sequence diagram, that is the balance is less than 100

the call function ‗debitcharges()‘ is called guard condition.

Activation:

Activation is represented as vertical thin boxes on the dotted lines of the Lifelines,

which represents the time an object takes to complete the task. Following diagram

shows the activation.

Objects:

There are four different types of objects are the, who interact with each other in the

sequence diagram. All these objects are described below:

Actor

Actor

Actor object initiate the task. Actor is an instance of

the class and it is external entity. The role of the actor

is same as in Use-case diagram.

Boundary

Instance of the boundary class is used to model the

communication between system and external objects

like Actor.

Controller

Controller is used to control the behavior specific

use-case. It represents logic. Usually it comes

between boundary and entity.

Entity

Entity object is used to store the associated behavior

or model information. It represent stores of

information in the system.

181

3.9 UML DIAGRAMS-EXAMPLE

A Shri Gurukrupa Glass Traders (SGG) is a glass products selling company,

want to develop website, so that it can provide facilities to its customers, to select

various types of glasses and place the order online. They also do the work related to

partitioning of cabins in the hall using glasses and aluminium frames. They want a

web-based application, so that customer can specify their requirements, by viewing

different typed of glasses, their thickness, designs and prices. SGG can send the

quotes of the requirements placed by the customer. Customer can place the order

online through the website. Day-to-day the administrator of the website, checks for

the requirements and if any requirement is available, admin will prepare the

quotation based on the requirement specified by the customer, and send it to the

customer. Once payment is made then Invoice will be generated. Customer can log-

in to the system and check past transactions with the company.

This online web-application also help the company to manage purchases, and

purchase returns of various raw materials from the supplier. System has to produces

different types of reports and helps company (SGG) to manage schedule of the

worker.

Draw the various UML diagrams for the system described above.

182

Use-Case diagram of the System

183

Object Diagram of Login and User Category

184

Object Diagram of Sales

185

 Registration

 Login

SEQUENCE DIAGRAMS

186

 Manage Profile

 Manage Product

187

 View Product

 Search Product

188

 Select Product

 Quotation

189

 Purchase

 Purchase Return

190

 Sales Order

 Manage Profile

191

 Manage Product

 View Product

192

 Search Product

 Select Product

193

 Quotation

 Purchase

194

 Purchase Return

 Sales Order

195

Collaboration Diagrams

196

ACTIVITY DIAGRAM (PURCHASE)

Activity Diagram

197

STATECHART DIAGRAM (ADMIN)

198

3.10 Analysis Modeling

Analysis modeling can be organized by it four elements – scenario based modeling,

flow oriented modeling, class based modeling and behavioural modeling.

1. Scenario based modeling: In the scenario-based model, we draw the use case

diagram, Activity diagram and Swimlane diagram.

Use-Case: Use case is to represent the various scenario by the user (Actor) point

of view. User-case diagram is a simple and relatively easier approach to represent

what is outside of the system (Actor) and what system should be performed (use-

cases). We have already discussed how to draw the use case diagram in section

3.6

Activity Diagram: In the activity diagram we focus on main tasks or function (use

cases) of the use-case diagram, and represents what Actor can acquires,

produces or change in the system. Detailed interaction of the different users of the

system (Actors) and tasks of the system (use cases) can be represented by

activity diagrams.

Swimlane Diagram: It is nothing but the useful variation in the activity diagram

and allows the modeler to represent the flow of activities described by the user-

case and at the same time indicate which actor or analysis class has responsibility

for the action described by an activity rectangle.

Responsibilities are represented as parallel segments that divide the diagram

vertically, like the lanes in a swimming pool.

2. Flow-oriented modeling: Flow-oriented modeling represents flow of the data in

the system. It Represents how data objects are transformed as they move through

the system. We have already discussed Data Flow Diagram (DFD), which shows

the transitions of the data in the system. To draw the DFD, we need to identify

Entity, Process, Data stores and transition of the data among them are

represented by arrow. In the Block-2 we have already discussed the notations and

rules of how to draw DFD.

3. Class-based modeling: Class based modeling is also know as Object Oriented

Analysis. We have seen in that object-oriented analysis begins by identifying

classes. Once the classes are recognized then its attributes and methods are

199

identified. Classes are represented with their relations with the other classes. In

this process basic fundamentals of the object-oriented analysis such as

Abstraction, Encapsulation, Polymorphism and Inheritance is used. The elements

of the class diagram are already discussed in the section 3.7.

4. Behavioral Model: It indicates how system will behave or respond to the event

triggered by the external entities or actors of the system. To create the model, the

analyst must perform the following steps:

1. Evaluate all use-cases to fully understand the sequence of interaction

within the system.

2. Identify events that drive the interaction sequence and understand how

these events relate to specific objects.

3. Create a sequence for each use-case.

4. Build a state diagram for the system.

5. Review the behavioral model to verify accuracy and consistency.

To represents the various changing states of the system, state chart diagram is

used.

The States of a System

 State—a set of observable circumstances that characterizes the behavior of a

system at a given time

 State transition—the movement from one state to another

 Event—an occurrence that causes the system to exhibit some predictable

form of behavior

 Action—process that occurs as a consequence of making a transition

3.11 LET US SUM UP

In this chapter we have learnt how can we do object oriented analysis and design

using UML diagram. We have seen the rules, symbols and components of Use-case

diagram, Class diagram, Sequence diagram and so on. At the end we have seen the

fundamental concept of designing good and quality system. We hope now student

can draw UML diagrams of any system if clear and concise requirements are given.

200

3.12 CHECK YOUR PROGRESS

Fill in the blanks

1. In the Use-case diagram user is called .

2. diagram is used to show changes in the state of the system.

3. In the Sequence diagram is the interface between user and system.

4. In the class diagram if the construction of the object made by the instance if

different classes then and if construction is done by the multiple

instances of the same class the is used.

5. In the class diagram process of making new class from two or more classes

having common attributes is called .

6. In the sequence diagram is message is passed on the basis of condition then

condition is known as condition.

7. In the sequence diagram validation is done by .

3.13 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Fill in the blanks

1. Actor

2. State-chart diagram

3. boundary

4. aggregation, composition

5. generalisation

6. guard

7. controller

3.14 FURTHER READING

1. Software Engineering – A Practitioner‘s Approach by Roger S. Pressman

(Mc Graw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)

3. System Analysis and Design Methods by Gary B. Shelly, Thomas J.

Cashman, Harry J. Rosenblatt (CENGAGE Learning)

201

4. Magnifying object-oriented analysis and design by Arpita Gopal and Netra

Patil (PHI)

5. Object-oriented modeling and design by James Rumbaugh, Michael Blaha,

William Premerlani, Frederick Eddy, William Lorensen (PHI)

3.15 ACTIVITIES

1. Draw UML diagrams for online library management system. Make suitable

assumptions.

202

Unit 4: Software Design
 4

 Unit Structure

 4.1 Learning Objectives

4.2 Introduction

4.3 Characteristics of Good Software Design

4.4 Design Concepts

4.5 Cohesion and Coupling

4.6 Design Modeling

4.7 Pattern Based Software Design

4.8 Let Us Sum Up

4.9 Check Your Progress

4.10 Check Your Progress: Possible Answers

4.11 Further Reading

203

4.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know – ―What is design modeling‖

 Understand the process of building design model from analysis model.

 Understand rules of building good software modular design

 Meaning of cohesion and coupling

 Using patterns in the software design

4.2 INTRODUCTION

The main aim of the Software Design face is to transform the customer

requirements, as mentioned in the SRS document, in the form of implementable

using any programming language. To implement design easily into any programming

language, following items are needed in the design phase:

 Different modules are required to implement design solution

 Relationships among these identified modules are required.

 Interface between different modules is also needed. Interface identifies the

exact data values exchanged between the modules.

 Data structures for each module.

 Algorithm required to implement each module.

So, in the design process takes SRS document as an input and produce the

document mentioned above. A good software design is rarely achieved in a single-

step procedure, and required several iterations. Software design can broadly classify

into two important parts:

 Preliminary design (high-level design)

 Detailed design

In the Preliminary design we identify different modules, relationships between them

and identifies and defines interfaces between the modules. The output of the

Preliminary design is program structure or system architecture. In the detailed

design, data structures and algorithms for different modules are designed. There are

large number of approaches are available to make good software design and we will

204

also discuss few of them, but before that we should know what is good software

design?

4.3 CHARACTERISTICS OF GOOD SOFTWARE DESIGN

It is very difficult to characterize good software design for large number of problems.

The term ―Good software design‖ can varies for different types of applications, and it

is depending on the targeted application. However, most of the researchers and

software engineers agreed on few desirable characteristics, which are listed below:

 Correctness: A good software design should correctly implement all

functionalities of the system. If the all the functionalities are not correctly

implemented or having errors then software design will become meaningless.

So, it is very important that the software design should be correct and

acceptable.

 Efficiency: A software design should be efficient.

 Maintainability: A software design should easily accept the new features,

updates, or changes of the system.

 Understandability: A good software design is such, which is easily

understandable. If the software design is easy to understand, it will also be

easy to implement. If the system design in not easy to understand,

maintainability of system will become tedious and increases efforts.

For good software design, having all the characteristics discussed above, a

software engineer has to taken care of the following things:

 Various design component should have meaningful and consistent names. It

will increase the readability and understandability.

 The good software design should be modular. By mean of modularity, the

larger software has to be decomposed in to clean set of sub-programs called

modules.

 The design should not be complex. The modules of the system should be

arranged by layered approach in tree-like diagram. It is also called neat

arrangement of the modules.

205

4.4 DESIGN CONCEPTS

In this section we will discuss the system design concepts:

Abstraction: At the highest level of abstraction, solution of the problem environment

is described in the broad term. At lower level of the abstraction, details solution of the

problem is provided. As we move from different levels of the abstraction from higher

to lower levels, we produce procedural (sequence of instructions) form of the

abstraction. In general abstraction is the process of identifying properties and

methods. Data abstraction is a named collection of data that describes a data object.

Information hiding: It is related to controlled interfaces. Hiding means that effective

modularity can be achieved by defining by a set of independent modules that

communicates with one another only that information, which is actually needed. The

different data is encapsulated as a single unit which is not accessible directly by

other modules.

Modularity:Large system has to be divided into number of small and manageable

sub-systems which are separately named and addressable. The small and

manageable subsystem is called modules. Larger program developed in a single unit

or module is not readable and also difficult to manage and implement. Rather than

managing the whole software as a single unit, it is easier to solve a complex

problem, by breaking it into manageable pieces – ―Divide and conquer‖. Modularity

reduces the complexity of the problem.

Clean decomposition: This concept is focused on module separation. How two

modules can be separated from each other? Obviously, by their functionalities. The

identifications of the modules have to done by observing their functionality. Module

should have functions, which are strong enough to perform the task either

independently or with the support of other functions of the same module. Function

calls outside the module in not a good design. In the software design modules

should be high cohesion and low coupling. It means modules should more self-

dependent and less independence on each other. Consider the following figure:1, to

distinguish the good software design and bad software design, in which M1, M2, M3

…etc. are the modules, and their dependencies are denoted by arrows.

206

[A] Good software modular design [B] Poor software modular design

Figure:1 Modular designs

Functional Independence: Functional independence is a key to good software

design, and good design is the key to quality software product. Function

independence means the strength of the function. The function has to be strong

enough and it should not be dependent on other functions of other modules. The

module decomposition should have high cohesion and low coupling.

coupling are discussed in the next topic in greater details.

Cohesion and

A module having high coherence and low coupling is said to be a functional

independence of other modules.

Module arrangement: In a good software design, the modularity should have

following characteristics:

 Layered solution

 Low fan-out and

 Abstraction

Patterns: Design pattern carries the essence of a proven design solution to a

recurring problem within a certain context within computing concerns. A design

pattern provides a design structure that solves a specific design problem within the

specific context, and within ―forces‖ that may have an impact on the manner in which

the pattern is applied. The commitment of each design pattern is to provide a

description that enables a designer to determine:

1. Is pattern can be applicable to the current work?

2. Is the patter reusable?

207

3. Is the pattern serves as a guide for developing a similar, but structurally or

functionally different pattern?

4.5 COHESION AND COUPLING

We have discussed above that the ―Good Software Design‖ implies clean

decomposition of the modules of the given problem. To achieve this, module

arrangement is most needed. The terms cohesion and coupling are related to

module arrangement. In the arrangement of the module, we need to follow thumb

rule – ―High cohesion and low coupling‖. Cohesion is a measure of the functional

strength of a module and coupling is a measure of the degree of interdependence or

interaction between the modules. High cohesion and low coupling means modules

have to be functionally independent of other modules. Cohesive module performs

single task of function. It should not depend on the functions of other modules.

Functionally independent module has less interaction with other modules.

If the modules are functionally independents then that design is considered to

be a good design and it helps us in:

Reusability: It allows us to reuse the module, because each module has well-

defined and precise functions, which are independent to other modules. So,

cohesive module can easily be taken out from a one project and can be reuse it into

the other projects when needed.

Understandability: If the modules arranged with high cohesion and low coupling,

have simpler design which is easier to understand. This makes error isolation much

simpler.

Isolation of Errors:If the modules are dependent of each other, then error of one

module, will propagates into other modules. If the modules are independent then

chances of propagating error will be reduced. It is easier to find the error and

eliminate it from the function.

4.6 DESIGN MODELING

A design model is an object-based picture(s) that represent the use cases for a

system, or represent it in another way. It represents the system implementation and

source code in a diagrammatic fashion.

208

The couple of advantages of the design models are:

1. Representation is much simpler that it represented by words.

2. Any person can see the diagrammatic representation and quickly get the

general idea of the system.

As we know, the design modeling is based on the analysis, it also involves number

of steps:

1. Data design elements

The data design element produced a model of data that represent a high level of

abstraction. This model is then more refined into more implementation specific

representation, which is processed by the computer-based system. The structure of

data is the most important part of the software design.

2. Architectural design elements

The architecture design elements provide us overall view of the system. The

architectural design element is generally represented as a set of interconnected

subsystems that are derived from analysis packages in the requirement model.

The architecture model is derived from following sources:

 The information about the application domain to build the software.

 Requirement model elements like data flow diagram or analysis classes,

relationship and collaboration between them.

 The architectural style and pattern as per availability.

3. Interface design elements

The interface design elements for software represents the information flow within it

and out of the system. They communicate between the components defined as part

of architecture.

Following are the important elements of the interface design:

1. The user interface

2. The external interface to the other systems, networks etc.

3. The internal interface between various components.

209

4. Component level diagram elements

The component level design for software is similar to the set of detailed specification

of each room in a house. The component level design for the software completely

describes the internal details of each software component. The processing of data

structure occurs in a component and an interface which allows all the component

operations. In a context of object-oriented software engineering, a component

shown in a UML diagram. The UML diagram is used to represent the processing

logic.

5. Deployment level design elements

The deployment level design element shows the software functionality and

subsystem that allocated in the physical computing environment which support the

software. The components arrived at during the component level design step are

groped for the purpose of delivery to their final destination.

4.7 PATTERN BASED SOFTWARE DESIGN

Developing software is challenging task, and developing a software that can

be easily reused in the other projects is even harder. The designs for the various

sections of the software coding, should be general enough so that it can be utilized

in the future problems. Pattern are useful in designing the software in determining

the appropriate granularity and in designing the system architecture that can be

reused in the future projects as well as easy to update or change in the future. At a

design level, patterns allow large-scale reuse of software architectures by capturing

the expert‘s knowledge of pattern-based software development.

DESIGN OF PATTERN TEMPLETE:

Name of the Pattern:Describes the essence of the pattern in a short but expressive

name.

Intent: Describe pattern and what it does.

Also-known as:List of the similar words to the pattern.

Motivation:Describe the example of the problem

Applicability:Record design solutions in which the pattern can be applied.

210

Structure: Describe the structure of class to implement pattern

Participants:Describe the responsibility of the class, we have designed into the

implementation of pattern.

Collaboration:Describes collaboration of the participants to carry responsibilities.

Consequences: Focuses on the considerable potential trade-offs, in the

implementation of pattern.

Related patterns:Provides references to the related pattern designs.

DESCRIBING PATTERN DESIGN:

1. Good designers of any field have ability to see patterns that characterized a

problem and related pattern that can be implement to create a solution.

2. Description of the pattern design can be considered a set of design forces.

a. All non-functional requirements (e.g. portability, ease of maintainability)

associated the software for which the pattern is to be applied, is

described by Design forces.

b. Design forces describes conditions and environment, that may exist in

the pattern design.

c. Design forces also describes the constraints that may restrict the

manner in which the design pattern is to be implemented.

3. To accommodate a variety of problems, the attributes of the patterns (classes,

collaborations etc.) are adjusted.

4. The attributes which represents the characteristics of the pattern may store in

the data base, so that based on the attributes we can search the pattern.

5. Guidance related to any complications should be provided in the pattern

design.

6. Pattern design should have appropriate name.

HOW TO USE PATTERNS IN DESIGN?

After developing the analysis model, software designer can examine detailed

representation of the problem to be solved. Also designed has to focused on the

contrarians that are imposed by the problem. Design patterns can be used

throughout the software design. Examination of the problem description at each level

211

of description opens one or more different types patterns, which are discussed

below:

Architectural patterns:Architectural pattern defines the overall structure of the

software. The overall structure of the software indicates components (subsystems)

or the software, relationship between subsystems, and rules which specifies relation

among packages, classes, components, or subsystem of the architecture.

Design patterns:Design pattern addresses a specific element of the design such as

an aggregation of components to solve some design problems, relationships among

components, or the mechanisms for effecting component-to-component

communication.

Idioms: Idioms are also known as coding patterns, these language-specific patterns

generally implement an algorithmic element of a component, a specific interface

protocol, or a mechanism for communication among components.

4.8 LET US SUM UP

In this chapter we have learnt how can we make design model from the analysis

model. We have discussed that design modeling is prepared from the analysis

model. Each abstraction level of analysis modeling is translated in the design

modeling where the components of the software such as packages, classes, and

relationship among them is prepared. We hope student can now understand design

modeling and its use in software production.

4.9 CHECK YOUR PROGRESS

1. is a measure of the functional strength of a module.

2. between two modules is a measure of the degree of

interdependence or interaction between the two modules.

3. A module having high and low is said to be a functional

independence of other modules.

4. design concept suggests to divide the large unmanageable system,

into number of manageable sub-systems.

5. system analysis model, focuses on events, state and state transitions.

212

4.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Cohesion

2. Coupling

3. Cohesion, Coupling

4. Modularity

5. Behavioral Model

4.11 FURTHER READING

4. Software Engineering – A Practitioner‘s Approach by Roger S. Pressman

(Mc Graw-Hill international edition).

5. Fundamentals of Software Engineering by Rajib Mall (PHI)

6. System Analysis and Design Methods by Gary B. Shelly, Thomas J.

Cashman, Harry J. Rosenblatt (CENGAGE Learning)

7. Magnifying object-oriented analysis and design by Arpita Gopal and Netra

Patil (PHI)

8. Object-oriented modeling and design by James Rumbaugh, Michael Blaha,

William Premerlani, Frederick Eddy, William Lorensen (PHI)

213

 Block-4

 Software Testing and

 Software Project Management

214

Unit 1: Quality Concepts and
Approaches

Unit Structure

1.1 Learning Objectives

1.2 Introduction

1.3 Principles and Characteristics of Software Testing

1.4 Test Strategies for Conventional Software

1.5 Software Testing Life Cycle Phases

1.6 Let Us Sum Up

1.7 Check Your Progress: Possible Answers

2

215

1.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand:

 Fundamentals of SW Testing with Common Testing terminologies

 Meaning, content and importance of testing strategy along with generic steps

involved in testing a product

 Principles of testing

 Key characteristics that need to be considered while designing the strategy

 Detailed test strategy for conventional and Object Oriented Software

 Reasons for involving independent testing team

 Contents of test Plan

 Software Testing Life Cycle Phases – Requirement Analysis, Test Design,

Test Case Construction, Testing

1.2 INTRODUCTION

We discussed in Block 2 Unit 2 and Unit 4 that Software Quality Assurance is very

important to maintain and improve product quality. As part of SQA we need to

perform various technical reviews at the end of each SDLC phase and also need to

do thorough testing of the application functionality once developed.

1.2.1 SOFTWARE TESTING FUNDAMENTALS

Testing in simple terms is a process of executing the program or application with an

intention to find errors.

Defect isa flaw in a component or system that can cause the component or system

to fail to perform its required function or it wrongly performs the required function or it

produces wrong result.

At the end of testing process, we are expected to check that

1.2.1.1 Software requirements are implemented completely and correctly

1.2.1.2 And the system performs no unintended

functions means system does not do what it

is not supposed to do.

A test condition is simply something that we could test. Tests or test conditions are

216

derived from requirements, technical specifications, code itself or from business

processes. These source documents are often known as test basis.

Test case: Test case is a set of input values, execution preconditions, execution

steps, expected results and execution post conditions, developed for a particular

objective or test condition, such as to exercise a particular program path or to verify

compliance with a specific requirement. [After IEEE 610]

Regression Testing:Every application undergoes changes due to various reasons

during development and after implementation. The reasons could be changes in

business rules, government norms or even due to defect fixes.

These changes may introduce new defects in the areas which were working fine

earlier. So, we need to test previously tested programs or functionalities in order to

ensure that new defects are not introduced and functionalities continue to work fine.

This is known as regression testing.

Verification and Validation (V&V)

There is hardly any software which is understood, designed, coded, tested and

maintained by single person. Almost all the projects (except for very small

independent assignment) require many human resources starting from Analysts, to

Designers to Coders to Testers to Customers. Each team is responsible to take input

documents from previous team, do their specific tasks, develop their own work

product and pass it on to next team for further work. So, at each stage, the team

needs to ensure that whatever they do is in conformation to previous stage.For

example, Design should confirm to requirements, Code should conform to program

specification This process is known as Verification At the end the project the testing

team should ensure that the system meets customer requirements. This process is

known as validation.

Verification refers to set of tasks that ensure that software or a work product

correctly implements a specific function as per specification (as finalized in previous

phases).

It answers the question - Are we building the product right?

Validation refers to different set of tasks that ensure that the software already

constructed is traceable to customer requirements

217

It answers the question - Are we building (have we built) the right product?

V&V includes wide array of SQA activities: technical reviews, quality and

configuration audits, performance monitoring, database review, algorithm analysis,

development testing, usability testing, qualification testing, acceptance testing,

installation testing and so on.

1.2.2 SOFTWARE TESTING STRATEGY

Importance of Test Strategy: In most projects, testing requires around 25% to 30%

of overall project time and involves almost all the stake holders directly or indirectly –

Project manager, development team, testing team and customers. So, it can result in

chaos, waste of time, Waste of effort and may result into leakage of errors if it is done

haphazardly. Hence preparing and following strategy is essential for every project.

Content of Test Strategy

Test strategy includes all the steps to be followed for a project along with timelines,

effort & resource requirements and techniques & processes to be used for testing.

The strategy provides answers to various questions such as

- How much effort will be required,

- How much time will be required

- How the testing will be conducted,

- By when each step/activity will be done,

- Which techniques and tools to be used,

- Which resources will be used

Testing requires enormous amount of time, effort and resources and it is likely that

testing team may not get enough time to for in-depth testing. So, the strategy may

also answer some questions such as

- Whether entire system should be tested as a whole or only part of it can be

tested.

- What level of regression testing should be done,

- Will regression testing, test automation and risk based testing be used,

- How and when the status reporting will happen

218

and so on

So testing strategy involves what, when, who, how much and incorporates planning

for test case design, test execution, Defect management, resultant data collection

and evaluation.

Strategy customization: While general steps are followed for most of the projects,

a customized approach if any can also be planned. The number and types of tests

etc. will be different for different development approaches. Modern design

techniques and technical reviews help reducing number of initial errors that are

inherent in the code. Similarly different test methods, approaches and philosophies

are emerging to improve quality. So, individual project can decide which approach to

be used and how to use it and customize general strategy accordingly.

Who Prepares? Primarily project manager prepares the strategy and plan with the

help of project lead, and test specialists and then finalizes in consultation with all the

stake holders including customers.

Once the strategy is formed, a detailed plan is prepared and documented as a work

product of this phase. It describes the overall strategy and procedures that define

specific testing steps and the types of tests planned to be conducted.

1.3 PRINCIPLES AND CHARACTERISTICS OF SOFTWARE
TESTING

1.3.1 SW TESTING PRINCIPLES

After getting overview of Software Testing and before getting into lot of details, let us

understand 7 principles of Software Testing derived based on 40+ years of

experience. These principles offer general guidelines common for all testing.

Principle 1: Testing shows presence of defects

Testing can show that defects are present in the application but cannot prove that

there are no defects. Testing reduces the probability of undiscovered defects

remaining in the software, but even if no defects are found, it is not a proof of 100%

correctness

Principle 2: Exhaustive testing is impossible

219

Testing of everything (all combinations of inputs and preconditions) is not feasible

except for trivial cases.

Let us understand this with an example

A 6 character text field is supposed to accept a character code of which 1st character

should be numeric and all other characters should be alphanumeric.

How do we test this requirement? One and the best possible option could be to

check with all permutations and combinations and check whether the software is

working fine for each permutation combination of characters or not. 000001,

000002…. 00000a…00000z…000010….

1st character can be filled up in one of 10 ways. Rest can be filled up with 62 ways

(10 digits, 26 Lower case characters, and 26 Upper case characters)

Total combinations would be 10*625 = 9,161,328,320

Even if we can test one combination in 10 seconds, we will need around 2,905 years

to test all the combinations.

If we include 10 Punctuation characters – it would require 44,176 years of testing

So, Instead of exhaustive testing, techniques should be used to enable is to find

many defects with less effort.

Principle 3: Early Testing

To find defects early, testing activities should be started as early as possible in the

software development life cycle, and should be focused on defined objectives. We

will discuss in next unit that it is not advisable to wait for the entire application to be

ready before testing starts. As soon as a small component is ready, testing should

be done for that component.

Principle 4: Defect Clustering

Testing efforts shall be focused proportionately to the expected and later on to the

observed defect density of modules. A small number of modules usually contains

most of the defects discovered during pre-release testing, or is responsible for most

of the operational failures. Refer to SW measures and Metrics where we have

discussed a metric called Defect Density. It helps in identifying which module /

component has more errors per size unit. Even technical reviews can help identify

220

some small portion of applications which are likely to have more defects. So, it is

suggested to focus more on those modules/components.

Principle 5: Pesticide Paradox

When farmers go on using same pesticide repeatedly, insects become immune to

the pesticide after some time. Similarly, if the same tests are executed over and over

again, they will no longer find any new defects. To overcome this ‗pesticide paradox‘,

test cases need to be regularly reviewed and revised and new and different test

cases need to be written to exercise different parts of the software or system to find

potentially more defects.

Principle 6: Testing is context dependent

Testing is done differently in different context. For example safety critical software is

tested differently from an e-commerce site. The depth of testing or rigor with which

testing should be done depends on impact criticality of application. Some

applications if have defects can lead to very high impact in terms of financial loss,

social loss, loss of prestige or even loss of life. Such applications should be tested

very thoroughly. Some applications only display some static data; such applications

do not impact heavily if something goes wrong. So, such application may be tested

superficially as compared to critical applications.

Principle 7: Absence of errors fallacy

Finding and fixing of defects does not help if the system built is unusable and does

not fulfil the user‘s needs and expectations. It is hence important to ensure that

software system provides functionalities required by the customer/user.

Providing functionality as per user requirement is most important. Even if an

application provides excellent features, is aesthetically very rich, responds in

milliseconds but misses some important requirements of the user, there is no use.

Proper use of methods and tools, effective technical reviews and solid

management and measurement is required that leads to quality that is

confirmed during testing.

221

1.3.2 CHARACTERISTICS OF SOFTWARE TESTING STRATEGIES

In view of this, let us understand some key characteristics of Software

Testing Strategies

1. Effective technical reviews should be conducted before testing to avoid and

eliminate many errors during testing. Technical reviews have been discussed

in detail in section 2.6 of block 2.

2. All testing steps are aligned to development and hence it begins with testing

of individual components to group of component to the whole system. At

individual level, it focuses on to uncover defects related to data and

processing logic encapsulated in the component. Then after it focuses on

integration related errors when components are integrated and then focus on

entire system to uncover errors in meeting customer requirements.

3. Different testing methods and techniques are appropriate for different

software engineering approaches and at different point of time. Testing

techniques help to identify / select finite number of test cases with high

potential to find defects. Various methods/techniques are discussed in Unit 4

of this block.

4. Testing is considered to be a destructive process as you need to try to break

the system (to find errors). Hence there is a potential conflict if developers

(who construct the program) themselves do testing (destruct). So, validation

testing is generally done by independent team. Independent team provides

following benefits

- No biases towards the code written

- They test with a psychology to find defects in the program whereas

developers may test with a mind-set to prove that it works

- Bring independent view

Psychologically we hardly find defects in our own creation, so even if I test

the program that is created by me, I will focus on to prove that it works. On

the contrary, we are good at finding mistakes / issues from others, provide

suggestions for improvement in others creation. So, independent team is

able to find more defects then developers themselves.

222

However developers are certainly responsible for testing the

programs/components they have developed and also for testing technical

integration of the components they have developed to verify that it confirms

to specifications.

When Independent Testing Group (ITG) is doing testing, developers are

available to fix the problems identified by ITG.

5. Debugging must be accommodated in the testing strategy even though it is a

different activity

6. Testing cannot continue forever. It is practically impossible to identify and

remove all the defects from the product. Business and Software teams need

to come up with agreeable criteria to decide when to stop testing. The criteria

could be based on Effort, Money, time and more importantly (acceptable)

Quality level of the product. Various metrics can be used to analyse the

situation and taking decision.

1.3.3STRATEGIC ISSUES:

As per Tom Gilb [Gil95] testing strategy will be successful if testers

- Specify product requirements in a quantifiable manner long before

testing commences. It needs to include measurable goals for portability,

maintainability, usability, performance etc. in advance

- State testing objectives explicitly in measureable terms: It can include

some measures such as test coverage, test effectiveness, remaining defect

density, mean time to failure etc.

- Include User / User category oriented testing: It allows focusing actual

use of the software through use cases.

- Technical Reviews of Test strategy and test cases: Like developers can

make mistakes, testers may also make mistakes. Reviews of test strategy

and test cases help identifying inconsistencies, redundancies and omissions.

- Develop Continuous improvement approach for testing process: As

discussed in metrics, we need to have strategy to measure, compare with

past experience and take corrective / preventive measures to continuously

improve testing process.

223

Check your Progress 1

1) If all the defects found by experience testers, we can say that the application

now is error free. True / False

2) Testing should be done once the entire application is developed and

integrated. True/False

3) All software applications will have defects and hence they all should be tested

with lot of rigor. True / false

4) answers the question – ‗Are we building the product right‘?

5) Answer in one sentence why effective technical reviews should be done

before testing.

6) Unit testing should be done by independent team. True / False

7) Provide two aspects which can contribute to make testing strategy successful

1.4 TEST STRATEGIES FOR CONVENTIONAL SOFTWARE

There are various approaches, also known as ‗Software Development Process

Models‘ defined and used by different companies. For example, Waterfall Model,

Incremental Process Model, Iterative Model, RAD (Rapid Application Development)

Model, Agile Model, Spiral Model and Prototype Model. Please refer Block 1 for

more details. Each process model follows a particular life cycle in order to ensure

success in process of software development.

Software life cycle models describe phases of the software development and the

order in which those phases are executed. However, most of the models use

following phases.

- Requirement Understanding & Analysis:

- Design: Functional Design, Detailed Design, Program Specification

- Development / Coding:

- Testing: Unit Testing, Integration Testing, Validation Testing, System Testing,

Acceptance Testing

- Implementation

224

As part of typical V&V strategy, each of the work product produced at the end of

each SDLC phase is reviewed (verified) so that it is ensured that at each stage we

confirm to the expectations from the given phase based on the previous phase.

As part of design, most business functions are decomposed in to small units /

components. So, we first focus on developing those units / components and then

integrate them as required by other component. All those technical and business

functions are integrated together to form a system. In order to manage time and

effort properly and reduce the cost, testing should start as soon as individual

components are ready. So, unit testing is done as soon as the component / unit is

developed to verify that it meets detailed design / program specifications. Once

individual components are integrated, integration testing is done to verify against

architectural design and once all the components are integrated to be able to deliver

business functionality, validation and system testing is done to verify and validate

against functional requirements.

Unit testing, Integration testing, Validation testing and System testing are known as

testing levels as they start from smaller level and expands to the entire system.

Testing levels are related to various SDLC phases as shown in V Model diagram

provided below. We will discuss all testing levels in detail in subsequent sections.

V Model

The diagram given below depicts SDLC phases on the left side, Testing Levels on

the right side and relationship between them through arrows.

Since the diagram makes V shape it is popularly known as V model.

Unit and integration testing are done by developer but Validation / System testing is

done generally by independent team. We already discussed benefits of involving

independent team.

225

Check your Progress 2

1) Which are the standard phases used in almost all models?

2) Integration testing verifies Program Specifications. True/ False

3) List down testing levels in order in which they are executed

4) Unit testing should be done by Independent team. True / False?

1.5 SOFTWARE TESTING LIFE CYCLE PHASES

As discussed, Validation / System testing is done for the entire application built by

independent team, a very well defined strategy and plan is followed for the same. It

requires similar phases as followed by development project. They are known as

Software Testing Life Cycle (STLC) Phases.

226

.

Let us discuss all these phases in details

Business requirements are the key inputs to both Development and Testing teams.

Functional specification documents are prepared by development team which

become input for further development phases and becomes input to testing team for

their own test phases.

Like Development life cycle phases, independent testing team also follows following

activities

- Requirement Analysis and Ambiguity reviews

- Test Design

- Test Case Construction and Test Suit Development

- Test Execution and defect management

- Closure

1.5.1 TEST PLAN

As you must have realised and will realize after reading next two sections of this

block, testing project itself is a very intense activity involving multiple stake holders,

resources, tools and of course requires considerable amount of time. This is a full-

User

SDLC Phases

Unit

Testing

Integration

Testing

Developed

STLC Phases

Closure
Test

Execution

Test Case

Construction

Test

Design

Requirement

Analysis and
Review

System / Validation Testing

227

fledged project by itself and hence need to plan properly. So, the testing project

manager would prepare and document a detailed plan that would cover at least

following sections.

Scope: Describes what is in scope and what is out of scope. So, it will include list

of applications, Modules, Functionalities, Testing Objectives and Testing types

within the scope and outside the scope.

Strategy: Describes how testing will be done. Will it be only manual or automated

also? Which techniques to be used and at what level the testing should be done?

Milestones: Describes start and end dates of various phases / tasks (Refer

STLC phases)

Entry/ExitCriteria: Describes the preconditions to enter into a specific STLC

phase and what should be completed to go to the next phase. For example, on

what basis one would say that requirement analysis phase or test design phase

is completed? The decision may also depend on the quality review of the phase

Resource Requirements: Provides details of what kind of hardware, software

and human resources required. Number of testers required would depend on

total size of the project (eg. Number of test cases) and Expected defect density

and productivity.

Roles and Responsibilities: Describes who will be playing various roles and

what they are responsible for. Test Manager, Test Lead, Module testers,

Coordinators or such are some common roles played by various team members.

Communication: Describes how communication will happen between various

teams and how status of the project will be reported

Defect Tracking and Resolution Process: Describes process to be followed for

Defect tracking and resolution.

Risk Manage ment: Describes all potential risks which can impact quality or

timeline of the project and what steps to be taken to mitigate the same

Assumptions: Describes all the assumptions taken while planning

228

1.5.2 REQUIREMENT ANALYSIS AND AMBIGUITY
REVIEWS

Testing team will understand all the business requirements and functional

specification requirement and analyse them from clarity, completeness and

testability point of view. We already discussed Ambiguity reviews earlier in

section 2.6 of Block 2. All the ambiguities are reported as defects and

clarification sought. If required, requirements written in paragraphs and pages

will be itemized (simplified) in to smaller and traceable requirements. As part of

this, it is ensured that each requirement addresses only one thing which can be

independently tested. Lastly the understanding is verified from the business

users and development lead.

Sample itemized requirements for a registration process

Requirement

Id

Description

RF-01 Registration form is displayed once ‗New Registration‘

button clicked on home page

RF-02 Registration form has provision to input all personal

information - Name, gender, marital status, Birth date and

contact details such as full address, phone number, mobile

number, and fax number, email ID

RF-03 Name, Birthdate, Mobile Number and email ID are

mandatory fields

RF-04 Age should be > 18 years

RF-05 Email Id and mobile numbers should be in valid format

….. ………

Requirements are also reviewed for testability. It may not be simple or possible to

test some requirements as per sample given below

- Requirements which changes dynamically on web applications

- Testing requires specific environment which is not available

229

- No Limit expectations – For example, a requirement says, user should be

able to enter any number of characters in remark field – With how many

characters you should try to test?

- Implicit requirement which needs some clarification and cannot be tested

unless clarified.

1.5.3 TEST DESIGN

Before the actual testing starts, one need to design the tests and construct test

cases in advance by applying various guidelines and techniques. We look at various

test basis such as requirement specification, Functional specification or technical

design documents or even code itself to derive test conditions. Test Condition is an

item or event of a component or system that could be verified by one or more test

cases.

Let us take an example of above requirements and see how test conditions are

derived from them

Id Itemized Requirement Test Condition

RF-01 Registration form is displayed once ‗New

Registration‘ button clicked on home page

Ensure that system

displays Registration

form when user clicks

on ‗Registration‘ button

RF-02 Registration form has provision to input all

personal information - Name, gender,

marital status, Birth date and contact

details such as full address, phone

number, mobile number, and fax number,

email ID

Ensure that various

fields are available on

the registration form and

user is able to input

details in these fields

RF-03 Name, Birth date, Mobile Number and

email ID are mandatory fields

Ensure that system

displays error if

Name is kept blank or

Birth date is kept blank

230

 or

Email ID is kept blank or

Mobile number is Kept

blank

RF-04 Age should be > 18 years Ensure that System

displays error if Age

calculated based on

Birth date is < 18 years

Query: What if the age

is exactly 18 years?

Allow? Or not allow?

Test conditions may be written separately and need not be written aside the

requirements. However it should be possible to link them back to the test basis

to ensure that nothing important is missed out in testing.

1.5.4 TEST CASE CONSTRUCTION

Test case: Test cases consists of a set of input values, execution preconditions,

expected results and execution post conditions developed for a particular objective

or test condition, such as to exercise a particular program path or to verify

compliance with a specific requirement. [After IEEE 610]

For example, test condition related to invalid login credentials can be converted to

various test cases with different data sets such as - Null User - Null Password,

Invalid User-Valid Password, Valid user-Invalid password and so on.

Initially high level test cases without concrete (Implementation level) values for input

data may be prepared and once database is setup, low level test cases with

concrete values for input data can be prepared.

Generally all the test cases are documented prior to execution and normally contains

following information at minimum

Test Case ID: Each test case is given a unique identifier for future reference

231

and tracking.

Pre-Condition: Before you execute a specific test, the system should be in the

state mentioned here. Test Preconditions can also include availability of

required test data in the database. For example, if ticket booking functionality to

be tested, you are expected to first successfully log in. Successful login is a pre-

condition for testing ticket booking functionality.

Test Steps: A detailed description of steps to execute the test. One may also

include Step Number for each step.

Test Data/Input: Inputs & its combinations / variables used

Expected Result: include information displayed on a screen in response to an

input, and also include changes to data and / or states and any other action

triggered (e.g. email to be sent etc.)

Let us see sample test cases

Test

Case

ID

Test

Condition /

Scenario

Preconditions

(If any)

Test

Steps

Input

Data

/Test

Expected

Result

Pass/

Fail

 Enter

User

Name

User Name=

―prakash7‖

To validate

the login

The

application is

Enter

password

Password=

―prakash123‖

TC_01 page with invoked and Display

 Invalid user

name

login page is

displayed

Press

Error

Message

 LOGIN Box "Invalid

 Button User ID.

Enter

 Again"

232

TC_02

To validate

the login

page with

valid user

name but

invalid

password

The

application is

invoked and

login page is

displayed

Enter

User

Name

User name =

‖Prakash71‖

Enter

password

Password= ‖

Pralash123‖

Press

LOGIN

Button

 Should

Display

Message

Box "Invalid

Password "

TC_03

To validate

the login

page with

valid user

name and

password

The

application is

invoked and

login page is

displayed

Enter

User

Name

User name =

―Prakash71‖

Enter

password

Password=

―Prakash123‖

Press

LOGIN

Button

 Display

Welcome

message

and display

home page

TC-04

..

233

Test Design Techniques.

Converting requirements into test cases is not a straight forward simple

process. The aim is to define test cases which have high potential of finding

defects which could not be found by other test cases. It requires good

experience and knowledge of various techniques to come up with such good

test cases. We will study some of those techniques in Unit 1 of this block.

1.5.5 TEST EXECUTION AND DEFECT MANAGEMENT

Validation and System Testing is done by independent testing team after unit and

integration testing completed. It is generally done in a different test environment

where latest version of the entire application is installed, database is set up, required

data particularly master data is set up, various users are created for different user

types and then a simple sanity check is done just to check that the set up done

properly and actual testing can be started.

We use the test cases created in the test case construction phase during test

execution.

For each test,

o we bring the application state to pre-condition,

o follow the steps mentioned in test case

o input the actual data as specified and

o Observe the system response.

It is considered as a defect if the actual result is different than expected result. Such

defects are reported along with details such as steps followed, data entered etc. In

some cases screen shots showing steps and result are also attached.

The defects are fixed by the development team and closed by testing team after

retesting. This process may be repeated many number of times till all or most of the

defects are fixed.

It will hardly happen that all the defects are removed from the application. So, a

decision whether to carry out more testing cycles or to stop testing and debugging is

taken based on some predefined criteria.

234

Check your Progress 3

1) List down STLC phases used for Validation and System Testing.

2) Specify any four aspects covered in Test Plan

3) Provide any two requirements which are considered non-testable

4) Test Condition is an item or event of a component or system that could be

verified by one or more test cases. True / False?

5) Briefly explain pre-condition for test case

6) Briefly explain how test cases are used for test execution.

1.6 LET US SUM UP

Every software applications small or big, simple or complex will have defects due to

various reasons. Testing needs to be done in order to find and remove the defects

before application is delivered to customer / moved to production environment.

Testing requires around 25% to 30% of effort of overall project time and can waste

time and effort and leak some defects to production if not done in planned manner.

So, organizations should have proper strategy and plan involving timeline, resources

and processes to be used.

It is important to note that testing can only find defects and cannot guarantee that a

particular code is error free. Also the testing should start early from individual

component to a specific integrated function to entire system. Test cases should be

revised over a period of time as per requirement.

Throughout the Software Development Life Cycle, one need to verify all the

intermediate work products to ensure that they confirm to what is specified and at the

end the developed code needs to be validated to ensure that it meets customer

requirements. So, effective technical reviews should be conducted, testing steps

should be aligned to development, various techniques and methods should be

followed to identify finite number of test cases which have high potential to find

defects and redundancy is avoided. Validation testing and system testing should be

done by independent team to avoid any potential biased or bring different

perspective. It is practically impossible to remove all the defects from the application

235

before it is delivered and hence it is better to have all test objective objectively

defined and criteria decided when to stop testing

In a convention software development approach all the testing levels are aligned to

standard development phases under which each technical component is tested

based on program specification first then integration testing is done based on

architectural design and then validation testing is done based on requirement

specifications. V model describes this approach by depicting all SDLC phases on

the left side, Testing Levels on the right side and relationship between them with

arrows.

For object oriented software, Unit testing focuses on operations within class and are

tested in context of the class or subclass and the state behaviour of class or

subclass. Integration testing for Object oriented software uses thread based testing

or use based testing.

Validation testing and system testing is an intense activity involving independent

testing team and a detailed test plan is prepared covering, scope of testing, strategy,

milestones, Entry/Exit criteria, resource requirements, roles and responsibilities of

various teams, communication process and defect tracking and resolution process.

Risk management plan is prepared and assumptions taken are also documented.

It follows similar phases as for software development. It covers

- Requirement analysis and reviews,

- Test Design by deriving test conditions based on itemized / individual

requirement,

- Test Case construction in which all the detailed steps are provided with inputs

to be provided and results to be expected

- Conducting actual test execution and defect management

Defects reported by testing team are fixed by development team and are closed

again by testing team after ensuring that they are really fixed.

236

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

4) False

5) False.

Because testing should actually start as soon as individual components are

developed Applications have defects due to:

6) False.

Because the impact of defects may vary from application to application.

Highly critical applications may be tested with lot of rigor but low critical

applications may not be tested with high rigor.

7) Verification

8) Effective technical reviews should be done before testing to avoid and

eliminate many errors during testing.

9) False.

Unit testing is done by developer. Independent team is involved only during

System / Validation testing.

10) aspects which can contribute to make testing strategy successful:

a. Specify product requirements in a quantifiable manner long before testing

commences

b. State testing objectives explicitly in measureable terms

c. Include User / User category oriented testing

Check your Progress 2

5) Standard phases used in almost all models are Requirement Understanding,

Design, Development, Testing, Implementation.

6) False. It verifies Architectural Design.

7) Testing levels in order in which they are executed:

Unit Testing, Integration Testing, Validation Testing, System Testing

237

8) False. Unit testing is done by development team only.

Check your Progress 3

3) STLC phases used for Validation and System Testing are:

Requirement Analysis and Reviews,

Test Design,

Test Case Construction,

Test Execution and Closure

4) Four aspects covered in Test Plan:

Scope, Milestones, Resource Requirements, Communication process

5) Requirements which are considered non-testable:

a. Requirements which require specific environment which is not

available

b. Requirements which changes dynamically on web applications.

6) True

7) Precondition specifies the state in which the application should be. If it is not

in that state then you need to follow some initial steps on application which

are not part of testing so that it comes in that state from where the steps for

test case starts.

8) Each test case contains pre-condition, steps to be followed, data to be input

and expected result. So, test case can be referred to

o bring the application state to pre-condition,

o follow the steps mentioned in test case

o input the actual data as specified and

o Observe the system response.

238

Unit 2: Testing Levels and
Debugging

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Unit Testing

2.4 Integration Testing

2.5 Unit & Integration Test Strategies for object Oriented Software

2.6 Validation Testing

2.7 System Testing

2.8 Debugging

2.9 Let Us Sum Up

2.10 Check Your Progress: Possible Answers

2

239

2.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand:

 Unit Testing

 Integration Testing

 Validation Testing

 System Testing

 acquire details of debugging process.

2.2 INTRODUCTION

We discussed that testing starts from lowest level that is individual component to

integrated components to the whole system. We will now discuss all the testing

levels in more detail

Every software application is made up of various modules (group of related

functionalities) and each module is collection of individual components integrated

with each other to deliver functionality. Study following diagram providing how Airline

reservation module is decomposed in to various business functionalities which are

visible to the users and some technical components (highlighted boxes) which are

not seen by the users. The upper level component can be considered as a parent

component which uses / calls lower level components.

Technically, designing small components, each focussing on very specific objective

help not only to maintain the system effectively but also allows lot of reusability. For

example, Input flight and passenger details component can be a common

component for both new ticket booking and modification of existing reservation. You

will find many boxes to which there are two or more arrows. They are all reused. So,

from development point of view, individual components are developed first and then

these components are integrated with each other. First each component should be

tested to ensure that it accurately serves its purpose for which it is developed. Once

other components are developed; they are integrated to check that they work

together also correctly by ensuring that the interface between them is proper. Once

240

Login Reservations

Current Bookings New Ticke t

Display& Manage
Existing bookings

Input Flight &
passenger

Insert
transaction

Modify
Calculate booking
/ refund amount

Print
Ticket

Fetch Existing
bookings

Update transaction

Booking

Cancel transaction

Cancel

Home Page

Customer Support View Flights Registration

that is done, the full functionality such as New Ticket booking or cancelling existing

reservation are tested to ensure that they are working as expected.

At each level, there are specific aspects which are tested. We will discuss each of

them in detail.

241

2.3 UNIT TESTING

Unit testing / Component Testing: The testing of individual software components

(smallest testable part of an application) to demonstrate that their smallest pieces of

executable code function suitably.

Various techniques are used to ensure complete coverage of all the program

statements and paths and try to find maximum defects. Component level design

description of program specification can be used as a guide (refer V Model). Let us

consider the component that calculates the reservation amount or refund amount for

our discussion.

Unit testing focuses on

1) Local data structures: Data useful to the program logic are stored in variables

which are then used at some places (on the right side of expression) or

changed at some places (used on the left side of expressions) and removed at

some places of code. For example, a variable will be used to store reservation

amount. It will initially contain 0 and subsequently will contain calculated

amount based on price fetched from the system, multiply with number of seats.

It will then be modified by reducing discount if any and then increased by taxes

as applicable. Local data structures related issues include Improper or

inconsistent data types, incorrect variable names, overflow, underflow

and address exceptions. For example,

a) The values of enumerated data types used without indexing an array

(may cause errors).

b) Initialization of variable with wrong value or Incorrect default value (eg

outside valid range) or buffer overflow can occur when we try to use/modify

data in buffer without care.

c) Incorrect string handling or failure of other string function due to

parameter/operand occupying null value for some reason.

d) Using Public and not using Private or protected data due to which private

data could be exposed to un-trusted components

e) Possibility of null referencing due to non-initialization before using a

variable in some formula or in conditions.

242

So as part of unit testing, it is ensured that data structures used to store data

maintains consistency and integrity as required.

2) All independent paths: Every program will have some control structures such

as If…Then…Else or Multi decision structures like Switch/Case or Loops such

as For, While, Do Until. Execution of various statements would be done or not

done or would be repeated based on conditions used in control structures. In

other words statements in different paths are executed based on these controls

structures. So as part of unit testing all independent paths through the control

structure are checked to ensure that each statement is executed at least once

during testing. It helps in identifying various issues such as

a) Usage of wrong condition or logical operators in IF or SWITCH

statements due to which flow of control in program may not happen as

expected.

b) SWITCH state ment with no default case (can result in unpredictable

result).

c) Mistaken state ment termination or unintentional termination of loop.

3) Computation, comparison and Control flows are checked for correctness

and appropriateness. Following issues could be identified

a) Loss of bits/bytes due to truncation.

b) Use of arithmetic exception such as divide by zero or floating point

exceptions (can result into issue).

4) Boundary conditions: Errors are more likely at the boundaries. For example

error may occur at the nth element of an n dimensional array or when the

maximum or minimum allowable value is encountered. So, testing should be

done to exercise data structure, control flow and data values just below at and

just above the maxima and minima to ensure that component operate properly

at the boundaries to limit or restrict processing.

5) Error handling paths: In real world, system will come across situations where

it cannot do further processing otherwise the output is surely going to be wrong

or sometimes the system can even crash. For example wrong input is provided

to the system or program is trying to insert some data in database but cannot

243

insert because of some constraints imposed. The system should handle such

situations and display proper error messages to the user. So, as part of unit

testing, it should ensure that error handling paths are executed when error is

encountered to reroute or terminate the processing. It also needs to ensure that

error condition is correctly processed; error messages are easy to understand

and provide enough information to assists the user to understand reasons for

error and what steps to be taken.

The program actually is expected to validate that the inputs provided by the user are

valid and acceptable as per design and as per business rules. Some typical implicit

expectations as per design would be as given below

o Input T ype Validation: For example, user enters characters by mistake when

only numbers are expected (such as in number of seats or phone number

etc.)

o Input Length Validation: For example system expects only 30 characters for

passenger name but user enters 40 characters

o Value Limit Validation: For example, in a single booking you cannot book

ticket for more than 6 passengers (It depends on business rule).

o Dependent Field Validation: For example your return journey date cannot be

prior to your travel date.

Some other typical errors one may find includes

- Change in global variable’s value due to one requirement but the variables

are used for some other requirement/functionality also.

- Inappropriate storage or use of Control data: Control data contains

business rules and tells application what to do and how to behave. For

example, Government tax rates and rules could be stored in table that support

business function of pay calculation.

- Mistakes in embedded query statements / improper use of joins (without

considering full primary key)

Unit Testing Procedure

Unit testing should be ideally done immediately after the coding is completed. Unit

244

test cases (test conditions and expected results) should be prepared based on the

program specification (or detail design document). Unit testing can be done in

parallel for multiple components by respective developers.

A component is generally not working stand alone, it may have some dependency on

other component (main program) which is calling it or subordinate which is called by

this component – refer diagram in the introduction section. So, it may be difficult to

test a component if those calling and called components are not yet ready. You may

have to develop dummy components namely driver which calls our component under

test and stub which is called by our component under test. Driver passes data to the

component under test and stub receives data from the component under test and

sends response back after some minimum manipulation.

Developing driver and stub requires effort and hence considered to be an overhead

as they are not going to be part of the final product. So they should be very simple

and less time consuming. If it is not possible to test components effectively with

simple drivers and stubs, then unit testing may be delayed till actual components are

ready. That is also the reason because of which component addressing only one

function with high cohesion design is not only easy to develop but is easy to test.

Various methods and techniques are used to derive or identify test cases which are

effective and not redundant. These techniques are discussed in next unit.

Unit testing is done by Developer himself.

Check your Progress 1

1) Unit testing is done based on Requirement Specifications. True / False

2) Provide possible types of errors related to variable initialization.

3) Switch statement with no default case can result in unpredictable result. True /

False?

4) Provide two important aspects to be checked for error handling.

5) Unit testing should be done by independent team. True / False?

6) When Component to be tested has some dependency on other subordinate

component which is not ready, may be created so that testing can

be done.

245

2.4 INTEGRATION TESTING

Integration Testing: Testing performed to expose defects in the interfaces and

interaction between integrated components. It verifies inter-component interfaces,

external interfaces and user and business workflows to identify issues associated

with inputs and outputs from one program to other.

Even though components individually work as desired, integrated modules may give

many issues as given below

2.4.1 Data can be lost across the interface.

2.4.2 One component can have in advertent, adverse effect on the other,

2.4.3 Sub functions may not produce desired result as expected by
major function,

2.4.4 Individually acceptable imprecision may be magnified to
unacceptable levels,

2.4.5 Global data structure can present problems.

- …

Some of the key reasons that can result into integration related issues

Inappropriate inclusion of header or other files: If you are using file providing

interface specification and by mistake include wrong file providing different

specification, there could be issues. Eg. One may use a connection object to

connect to test database and then forget to change before moving to live database.

The live application will connect to test database and not the live database

Misuse of interface: wrong parameter type, wrong parameter order, or wrong

number of parameters passed while calling other function. For example, ticket

booking process in an airline reservation system uses one form for basic travel

information. Once basic information is given the system will pass control to

passenger information screen. If number of seats entered in the first screen not

passed to the passenger information screen and it assumes single seat, the second

screen will accept passenger details for only one passenger.

Inadequate Functionality / wrong location of functionality: Such issues

arecaused by implicit wrong assumptions by one part of the system (developed by

one programmer) that the other part (developed by other programmer) will provide

certain functionality.

246

For example, Existing booking screen displays all active tickets and allows the user

to cancel ticket. On clicking the ‗Cancel‘ button for a specific ticket, control is passed

to cancel ticket program. Cancel Ticket program assumes the required validation for

eligibility of cancellation is done by calling program where as it was actually to be

done by the Cancel ticket program.

For example the term-exam module is expected to pass whether the student has

passed in the term exam or not but term exam module assumes it will be checked in

the main module.

Misunderstanding of Interface: For example, for search functionality, a module

calls a component to search and return the index of an element in an array of

integers. The called module uses binary search with wrong assumption that the

calling module gives a sorted array but the calling module assumes sorting will be

done by called module. Similarly in some other application, a module passes a

temperature value in Celsius to a module which interprets the value in Fahrenheit.

Data Structure limitation:

Sometimes, the field‘s width for a specific attribute is different in different tables and

in space provided in UI or Report. This can result into truncation of the value. For

example Passenger information screen allows 40 characters for the passenger name

but the database table column for storing passenger name has only 35 characters,

the ticket will print only 35 characters for the passenger name. Truncation will take

place.

Inadequate Error Processing: the calling module may fail to handle the error

properly even if the called module may return an error code to the calling module.

Inadequate Post processing: These errors are caused by a general failure to

release resources (eg. Memory) no longer required (failure to de-allocate memory)

Initialization/Value Errors: Initialization / proper assignment to variable or data

structure is required every time before calling the function but not done. For

example, the value of a pointer can change; it might point to the first character in a

string, then to the second character, after that to the third character, and so on. The

programmer may forget to reinitialize the pointer before using that function once

again; the pointer may eventually point to code

247

So, as the software architecture gets systematically constructed, integration testing

should be done to identify any potential issues listed above and other interface

issues.

During integration testing, focus is solely on the integration itself. For example, if

components A and B are integrated, testing is done for the communication between

the components, not the functionality of either one. Functionality of the individual

component is assumed to be done using Unit Testing.

Integration Testing Approaches

Integration testing can be done once all the components of the entire software

product are integrated. This , commonly known as Big bang approach can create a

chaotic situation as isolation of root causes may not be easy and hence fixing also

may not be easy.

It is hence suggested to adopt incremental approach under which integration testing

between two components are carried out as soon as they are integrated. Under this

approach, it is easy to isolate, correct and retest the errors.

The expected number of errors found in integration testing are much less than from

unit testing but it takes more time to find and fix the integration defects

Incremental testing has two sub categories – Top-Down and Bottom-up incremental

approaches.

Top-Down Integration

Under this approach modules are developed and integrated from top (main control

module) of the hierarchy and architecture is constructed by moving downwards

D

E

P

T

H

248

ation:

through the control hierarchy. Development of modules and integration of modules

happen from top to down.

So, first two components from top are integrated and then as the new components

are ready they are added and next level integration happens. The process continues

until last level component is integrated and tested. Initially stubs may be used where

the real component are not ready and are replaced with actual components when

they are ready

This approach helps in verifying major control or decision points early as decision

making occurs at the upper level.

Bottom-up integr B R E A D T H

Here the construction and testing begins from bottom – integration of components at

the lowest level of the structure. Stubs are not required but dummy code at the upper

level known as Drivers may be required. These drivers are replaced when actual

upper level component is ready with which the integration takes place and testing is

done at upper level. The process continues till top most level component is

integrated and tested.

Check your Progress 2

1) and are the two approaches of

Incremental Integration Testing

2) Provide any two possible issues one can find in integration testing which you

may not be able to find in Unit testing

3) Provide an example of ‗Misunderstanding of interface‘

4) If you do integration testing only after all the components are developed and

unit tested, it is called approach for integration testing.

2.5 UNIT & INTEGRATION TEST STRATEGIES FOR
OBJECT ORIENTED SOFTWARE

The testing strategy and tactics will be different for Object oriented software even

though the main objective of testing does not change. Key focus areas in case of

Unit and Integration testing is provided below.

249

Unit Testing: Here the focus is on classes and objects. A class can contain different

operations (methods) and a particular operation may exist as part of different

classes. For example an operation O1 is defined in a class and is inherited by some

sub classes. Each subclass uses the operation but in context of their private

attributes. So, the operations (methods) within the class are considered as smallest

testable unit and have to be tested only in context of the class or a sub class and the

state behaviour of the class or sub class.

Integration Testing: Object oriented software applications do not have obvious

hierarchical control structure and has direct and indirect interaction of the

components that make the class. So, following two strategies are used [Bin94b].

1) Thread-based testing: It integrates set of classes required to respond to one

input or event for the system. Each thread is integrated and tested

individually. Regression testing is applied to ensure that there are no side

effects.

2) Use-based testing: It begins the construction of the system by testing those

(independent) classes that use no or very few server classes. After that next

layer of classes (dependent classes that use other classes) are tested. The

process continues until entire system is constructed

Drivers can be used to test operations at the lowest level and for testing the whole

group of classes or can be used to replace the user interface so that testing of

functionality can be conducted prior to implementation of the interface.

Stubs can be used where collaboration between classes is required but one or more

of the collaborating classes has not yet been implemented.

A cluster of collaborating classes (based on CRC and Object relationship model) is

exercised by designing test cases that attempt to uncover errors in the

collaborations.

Check your Progress 3

1) Operations (methods) within the class are considered as smallest testable

unit. True / False.

250

2) Integration testing for Object Oriented follows two strategies,

and

3) There is no need to develop Driver or Stub for doing Unit/integration testing in

cases of Object Oriented system. True / False?

2.6 VALIDATION TESTING

Validation testing: The process of testing an integrated system to verify that it

meets all informational, functional, and behavioural requirements. Validation testing

is generally done by independent testing team.

Primary focus is on checking that various functions / transactions expected to be

performed by different users are working as expected. Use cases are used to

develop test cases for doing validation testing.

It is assumed that unit and integration testing completed and most if not all the

defects were fixed before the validation testing starts. Generally there is no

difference between Validations testing for conventional, object oriented and web

application as it is from the point of view of users where you don‘t need to worry

about internal program structure or logic.

Functional and Behavioural Testing

All the functions and processes as defined in requirement specification documents

are validated. So, it focuses on to ensure a) correct implementation of functional

requirements, business processes and behaviour, b) accuracy of content, c)

aesthetic presentation of content etc.

Typically System level controls and sequencing related errors can be found at this

level. For example,

- Some event should be activated but not activated at a right time.

- The sequences in which various events get activated are not correct. .

- A process is executed even if pre-requisites are not fulfilled. For example,

Cancelation process to be initiated only if criteria for the same is met (eg.

Before 24 hours of travel etc.)

251

- A process does not get activated even if all the pre-requisites are fulfilled.

- Deadlock situation occurs. In multi-processing / parallel computing and

distributed systems, software and hardware locks are applied and it is

possible that one or more threads mutually lock each other.

- Some functionalities are required but missing. It is defined in the requirement

document but missed out during the process

- Some functionalities are wrongly executed

- Some functionalities are developed but are actually not required.

Configuration Review

Every software application undergoes changes due to various reasons such as

change in requirement, fixing defect or change in business operations. Many

changes impact various work products like requirement specifications, database

design, architecture, developed components, related documentations already

prepared and even test cases already prepared.

Ideally there should be well defined process to identify various work products that will

undergo changes, establish relationship among them, use mechanism to manage

different versions, control the changes imposed and report the changes made.

The art of identifying, organizing and controlling modifications to the software being

built is known as Software Configuration Management (SCM).

So the objective of configuration review is to ensure that every work product is

accounted for, traced, and controlled; every change is tracked and everyone who

needs to know is informed.

Alpha and Beta testing

You don‘t have single customer for off-the-shelf or generic software products which

can be sold and implemented for many customers. So, it may not be easy to foresee

how actual user is going to be using the application. The end users may misinterpret

the instructions, input strange combination of data and/or may not understand clearly

the output produced by the software. For a customer specific software, acceptance

testing is generally done by the customer (or representatives of customer) based on

well-defined acceptance criteria. But for a general product (to be used by many

252

customers) formal tests with each customer is not practical. So, Alpha testing and

then Beta testing processes are used by many product builders.

Alpha Test is simulated or actual operational testing conducted at developer‘s site,

by representative group of end users and errors and usage problems are recorded

and fixed.

Beta test is conducted outside the developer‘s environment - at select few

customers site in real life (live) environment. They check whether or not a

component or system satisfies the user/customer needs and fits within the business

processes. All errors and usage problems are recorded and reported by customers

to the development team. Such feedback from the market becomes important to

incorporate various perspectives of different types of customers and enhance quality

and coverage. This exercise is conducted for some period of time and the application

is released to entire customer base after most (if not all) the errors reported by

customer are fixed.

Check your Progress 4

1) Validation testing is generally done by Independent team. True / False.

2) Validation testing should be done along with Integration testing. True / False?

3) Is validation testing approach different for conventional, object oriented and

web application? Why?

4) Typically System level controls and related errors can be found

at validation level testing

5) Provide any two types of typical errors one can find using validation testing

(while checking functionality of the application) with example

6) The art of identifying, organizing and controlling modifications to the software

being built is known as

7) Beta testing is done at developer‘s site. True / False?

2.7 SYSTEM TESTING

Primary objective of System Testing is to check how the system fits into overall

253

production like working environment involving hardware, people and database or

other systems and ensure that the overall system functions as expected and

performance is achieved.

Types of syste m tests

Recovery Testing

Ideally system should be fault tolerant and should not stop functioning because

of faults. Ensuring system to function 24 x 7 without any failure may not be

possible and some down-time may be expected due to faults. However the

system should recover from faults and resume processing almost immediately

or in very little time. Recovery could be automatic or with human intervention.

For some applications, checkpoint mechanism is used in which current state of

the process is saved and when failure occurs; the process is copied from the

last known check pointed state of the process and continue the process.

The recovery process involves Re-initialization; process recovery, data

recovery, and restart.

So as part of Recovery testing, situation is created to force the system to fail in

different ways and it is verified that recovery is performed properly and timely.

Mean-Time-To-Recover (MTTR) is calculated and evaluated to determine if it is

within the acceptable limits.

Security Testing

Illegal penetration to the system can leak sensitive information or cause actions

that can harm individuals or benefit to the people penetrating to the system.

Hackers may penetrate the system to take revenge or for personal gains.

Security testing attempts to verify that protection mechanisms are built into the

system to protect penetration.

The tester will play a role of hacker and try to

- Acquire / crack passwords,

- attack the system with custom software designed to break defences,

- may take control of the system and try to deny the services to others,

- may purposely cause system errors,

254

- Browse through insecure data hoping to find key to system entry.

System should be designed in such a manner that penetration is either not

possible or if possible, it is more expensive than the information obtained or

impact of the penetration.

Stress Testing

System may work perfectly fine in normal condition, but may fail under situation

where the system resources are required in abnormal quantity, frequency or

volume.

So as part of stress testing tester tries to create such situation and see how

system behaves. For example

- Generate ten interrupts per second when average is one or two

- Increase Input data rates much beyond average

- Try to increase memory usage and other resources to maximum

- Create a situation that cause excessive hunting for disk-resident data

In other words you try to increase the stress to try to break the system and see

how it responds. It is expected that even under stress, system should not crash

or hang but provide related message and either hold or stop the process.

Performance & Load Testing

Performance testing is designed to test run time performance of the software.

Real-time and embedded systems are expected to respond fast enough. Even

the simple web applications should respond fast enough otherwise the

customer may switch over to competitors. Many systems fail when large

number of users tries to use specific functionality at a given point of time. So,

tester also tries to create situation and see how system behaves when load

increases to the system. The objective is to uncover situations that lead to

performance degradation and possible system failure.

Deployment / Configuration Testing / Compatibility Testing

Many applications are expected to run on variety of platforms (operating

systems or data bases). The objective is to ensure that it works on each

environment it is supposed to support by examining installation procedures and

255

other documentation. Web applications should be tested for all supported

browsers and operating systems. Security tests may also be included

depending of potential threats on each environment.

Check your Progress 5

1) The metric used to check how much time on an average it takes to recover

the system after failure is known as

2) From the security point of view, how the system is expected to be designed?

3) Provide one or two example showing how stress testing may be conducted.

4) The objective of performance and load testing is to uncover situation that lead

to and possible system failure.

5) Briefly explain why compatibility testing should be done for web applications?

2.8 DEBUGGING

All the defects uncovered during testing phase needs to be fixed. Debugging is a

process of locating the actual issue within the code and removing it. There can be a

challenge that the external manifestation of the error (symptom) may not be able to

uncover actual internal cause. One need to first identify the root cause from the

symptom provided by tester. The defect may appear in one part of program but root

cause can be in some other program.

The Symptom

2.8.1 may disappear when other error is corrected

2.8.2 may be caused by human error that is difficult to trace

2.8.3 may be result of timing problems rather than processing problems

2.8.4 may be difficult to accurately reproduce input conditions

2.8.5 may be intermittent (primarily in embedded systems)

2.8.6 may be due to causes that are distributed across number of

tasks running on different processors

If the root cause cannot be easily found, it is suspected and some additional testing

256

may be done and the process may be repeated till the root cause is found.

The root cause can be identified by using one or more of following strategies

[Mye79]

a) Back tracking: tracking back the source code from the symptom location to

until cause is found.

b) Cause elimination: prepare list of all possible causes and conduct tests for

each or

c) The Brute force: try to find our clue that can lead to cause from memory

dumps and run-time traces.

Various tools can be used for relevant method or combination of methods used.

Even IDEs (Integrated Development Environments) provide features that can help

debugging. Debugging tools also provide features to interrupt the execution

(Breakpoint) just before the if condition statement and manually assign values of

variables and also interrupt the execution again immediately after the decision

completes and see the result before next set of statements are executed.

Developers can observe contents of variables, buffers and memory more closely in

the middle of the program execution. Developer can also step through the program

one statement at a time or cause the program to continue running either till next

breakpoint or till end.

Correcting the error:

Van Vlek [Van89] suggested that one should ask following questions before

correcting the error

1. Is the cause of the bug reproduced in other part of the program? Some logical

patterns or design patterns may result in multiple problems already found or

not yet found. So, rather than just focussing to fix specific reported issue, the

changes may be made such that all the other problems are also taken care

off.

2. What next bug might be introduced by the fix? One need to review the

changes planned to be done to fix the problem and ensure that the revised

code does not result in to some new bugs. If required, bug fixing can follow

regression testing in areas potentially impacted by the fix.

257

3. What could have been done to prevent this bug in the first place? Answer to

this question can help establishing / enhancing SQA process and can prevent

any similar problems in future.

Check your Progress 6

1) Briefly provide reason why root cause analysis should be done as part of

debugging?

2) , cause elimination and the Brute force are the strategies

used for identification of root cause

3) List down any two aspects one need to take care while fixing the defects.

2.9 LET US SUM UP

Most applications comprise of various business and technical components which are

first individually developed and then integrated with each other as per architecture

design. Unit testing is done as soon as the component is developed.

Unit Testing is done to verify against component level design description or

program specifications. It focuses on local data structures, independent paths,

computation, caparison control flows, and boundary conditions. During unit testing,

Input validations for type, length, value range is done and Error handling paths are

verified. Various issues could be uncovered related to data types, variable names,

overflow/underflow, null references, conditions, operators used, computation,

comparison etc. Unit testing can be done in parallel for all units by different

developers. There may be need to develop dummy components (driver or stub) for

testing a unit since it may not be working stand alone and have some dependency

on other components which are not yet ready.

Subsequently Integration testing takes place (once two or more components are

developed, unit tested and then integrated) to ensure that data is not lost in between,

sub function produces desired result as expected by major function. Integration

testing can be done in big bang approach (after all the components of the

application are developed and integrated) or Top-Down incremental where the

integration and related testing starts from top to bottom or Bottom-Up incremental

where integration and testing starts from bottom to top.

Unit and Integration testing for Object Oriented systems are done slightly differently

258

where operations within the class are considered to be smallest unit and are tested

in context of class or sub class. Similarly Integration testing is either thread based or

Use-based.

Validation testing is done generally by independent team once all the components

are integrated and unit and integration testing is also completed. The objective is to

validate the system to ensure that it meets informational, functional, behavioural

aspects as described in requirement / function specification document. It helps in

finding issues related to activation of events at a right time in right sequence with

required pre-requisites and also check that there is no deadlock situation, there are

no missing functionalities or functionalities are not wrongly executed. It also ensures

as part of Software Configuration Management (SCM) review that every work

product is accounted for, traced, and controlled; every change is tracked and

everyone who needs to know are informed.

For off-the-shelf of generic software products actual acceptance testing may not

happen as there is no single real customer. So, Alpha testing is done at developer‘s

site by end user representatives and errors / usage problems are fixed.

Subsequently Beta testing is conducted outside developer‘s environment at select

few customers site in real life (live) environment. They check whether or not a

system satisfies the user/customer needs and fits within the business processes.

Subsequently, System m testing is done to check how the system fits into overall

production like working environment covering Recovery testing, Security testing,

Stress and Performance testing and Deployment / configuration/ compatibility

testing.

For all the errors reported at any testing level, debugging is done to locate and fix the

exact issue (root cause) based on symptom reported. Root cause is identified using

Back tracking or Cause elimination or the Bruce force approach. Debugging tools

can be used through which execution can be interrupted temporarily to either assign

some value to the variable or observe contents of variables, buffers and memory at a

given place of the code. While fixing the defect, care is taken to ensure that bug is

not reproduced at some other part of the program; new bug is not introduced and

apply some steps to prevent such defect from then on.

259

2.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

1) False because Unit testing is done based on Program specification.

2) At the time of variable initialization variable may be initialized with wrong value

or incorrect default value or forgot to initialize error may occur.

3) True

4) Important aspects to be checked for error handling:

a) Error handing paths are executed when error is encountered to reroute or

terminated the processing and

b) Error condition is correctly processes

c) Error message is easy to understand

5) False. It should be done by development team.

6) Stub

Check your Progress 2

1) Top-Down and Bottom-Up

2) Issues one can find in integration testing which you may not be able to find in

Unit testing:

1. Data can be lost when passed from one program to other.

2. Sub function may not produce desired result as expected by major function.

3. Individually accepted imprecision may be magnified to unaccepted levels

3) An example of ‗Misunderstanding of interface‘

A module passes a temperature value in Celsius to a module which interprets

the value in Fahrenheit for further processing and hence giving wrong result

4) Big Bang approach for integration testing.

Check your Progress 3

1) True

2) Thread-based and Use-based

260

3) False

Check your Progress 4

1) True

2) False. It should be done after Integration testing is done.

3) No validation testing approach different for conventional, object oriented and

web application.it is same because it is from the point of view of users where

you don‘t need to worry about internal program structure or logic.

4) Sequencing

5) Typical errors one can find using validation testing:

1. Some events should be activated but not activated at a right time. For

example, the seats should be reserved as soon as the reservation is

confirmed but not done and due to which over booking could happen.

2. A process is executed even if pre-requisites are not fulfilled. For example,

a ticket is cancelled even if it does not meet the required criteria

6) Software Configuration Management (SCM)

7) False. Alpha testing is done at developer‘s site.

Check your Progress 5

1) MTTR – Mean Time to Recover

2) From the security point of view the system is expected to be designed in such

a manner that penetration is either not possible or if possible, it is more

expensive than the information obtained or the impact of the penetration.

3) Example showing how stress testing may be conducted:

1. Generate ten interrupts per second when average is one or two

2. Increase input data rate much beyond average or

3. Try to increase memory usage and other resources to maximumAnd see

how system behaves. System should not crash or hang and data should

not be lost

4) Performance Degradation

261

5) Compatibility testing should be done for web applications because different

users may be using different browsers for accessing web application and

hence it should be ensured that various browsers really support the

application without any issues.

Check your Progress 6

1) Root cause analysis should be done as part of debugging because the defect

may appear in one part of program but root cause can be in some other

program

2) Back-tracking

3) Aspects one need to take care while fixing the defects:

1. Some logical patterns or design pattern may result in multiple problems.

So, one must change the system such that all other problems are also

taken care off along with specific problem reported

2. Ensure that the revised code has not resulted in to some new bugs

3. Can any step be taken or SQA process e revised so that the one can

prevent any similar problems happening in future.

262

Unit 3: Software Testing
Methods

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 White Box Testing

3.4 Black Box Test Design Techniques

3.5 Let Us Sum Up

3.6 Check Your Progress: Possible Answers

3.7 References\Further Readings

3

263

3.1 LEARNING OBJECTIVES

After studying this unit students will understand meaning and approach of:

 White-Box testing and test design techniques

 Black-box test design techniques

 Equivalence Partitioning and Boundary Value Analysis

 Decision Table

 Use Case based Testing

 State Transition Technique

3.2 INTRODUCTION

As part of this unit you will understand methods / techniques to design test cases

which are limited but have potential to find many unique errors.

We discussed that every software application will have defects for multiple reasons

even if every possible care is taken during requirement understanding, design and

coding. There will be defects in the application even if programs are written in

structured manner with top down approach with all standards followed (which

generally does not happen).

We also discussed that failure cost sometime is very high and can impact life,

money, and prestige. So, defects need to be found and removed before application

is moved to production environment. In order to find defects, we need to check every

program for its logic and validate every functionality to ensure that it works correctly

as per requirement. We also discussed that unit, integration, validation and system

testing should be done thoroughly to identify and remove defects at each level.

However there are challenges in considering all aspects and permutation and

combinations in testing. Refer an example discussed as part of software testing

‗principle no 2 – Exhaustive testing is not possible‘ where we understood that if we

have to consider all permutation combinations for a 6 character field, it would require

44,176 years of testing.

264

Let us take other example from a program logic perspective.

A small C program contains two nested loops that execute from 1 to 20 times each

depending on input. There are 4 if-then-else constructs inside the inner loop as given

in the flow chart.

If we have to do exhaustive testing with all possible paths it may require 3170 years

even if automated test execution is done which can execute one test per millisecond

and work for 24 hours a day, 365 days a year.

So the objective of testing processes and techniques is

To find the greatest possible number of errors with a manageable amount of

efforts applied over a realistic time span with a finite number of test cases.

Hence, we have to select a subset of all possible tests (combinations) and still, it has

to have a high probability of finding most of the defects in a system.

Kaner, Falk and Nguyen have suggested some characteristics of good test as

provided below

- High probability of finding errors: Need to understand how and where the

system can fail using the test

- Not redundant: All tests should have different purpose and be able to find

different bug. If a test is going to find the same possible defect which other

test is also going to find then it is a waste of time.

265

- Should be best for breed: The test that has highest likelihood of uncovering

whole class of errors should be used from the group of tests having similar

intent

- Should be neither too simple nor too complex: Each test should be

possible to execute separately and focusing on a specific requirement.

The test design techniques provide guidelines through which one can focus on all

potential errors and restrict number test cases to essentially required ones. They

help us to optimize the testing – Not too much and not too less testing.

The application should be tested from two perspectives

- Internal program logic from developer‘s view

- Functionality from business user‘s view

We will understand test design techniques used for both perspectives namely White-

Box and Black-Box test design techniques in this unit.

Check your Progress 1

1) It is not feasible to do exhaustive testing. True / False

2) The objective of testing processes and techniques is to find

possible number of errors with manageable amount of effort applied over

 time span with finite number of test cases.

3) Provide any two characteristics of good test case

4) test design techniques focus on functionality from external –

business users perspective

3.3 WHITE BOX TESTING

White-box test design technique is a Procedure to derive and/or select test cases

based on an analysis of the internal structure of a component or system.

266

Complete Path: A path that starts at the
entry (first node) and ends at exit (Last
node)

Path: Sequence of blocks starting from a
particular node and ends in other or same
node. Eg. Paths between node 1 to 8 are a)
(1-2-3-8), (1-2-4-5-7-8), (1-2-4-6-7-8)

Region: bound by ages and nodes

Link/Edge: Arrows indicating direction of
flow of control and terminates to node

Node: Represents Statements, Process
Blocks and / or Decision

This is also known as Clear-box or Glass-boxTesting where you can derive test

cases to

- Exercise all the independent paths at least once

- Exercise all logical decisions on their true or false sides

- Execute all loops at their boundaries and within their logical bounds and

- Exercise internal data structures to ensure their validity

Flow Graph

For larger programs, it may be difficult to identify paths just by analysing the code

from top to bottom. Hence it is suggested to use flow graph depicting the control of

the program or portion of the program. Control flow graph (similar to flow chart) can

be drawn to represent the control flow of the program at a little abstract level. Let us

understand notations used for control flow graph using an example.

Area outside the graph is also considered one region and hence there are four

regions.

Independent Path: An independent path is a path that introduces at least one new

set of processing statements or a new condition.

267

The paths are represented using node numbers or link identifiers as given below.

Path No Path using nodes Paths using Links

a) 1-2-3-8-9-11-12 A-B-C-J-K-N

b) 1-2-3-8-10-11-12 A-B-C-L-M-N

c) 1-2-4-5-7-8-9-11-12 A-D-E-F-I-J-K-N

d) 1-2-4-6-7-8-10-11-

12

A-D-G-H-I-L-M-N

e) 1-2-4-5-7-8-9-11-12 A-D-E-F-I-J-K-N

f) 1-2-4-6-7-8-10-11-

12

A-D-G-H-I-L-M-N

Note:

- Separate nodes are created for each condition if a compound condition is

used in If statement

- Above 6 paths constitute basis set of the flow graph. So, if test cases are

designed to cover all the paths, every statement in the program will be

executed at least once and every condition will have been executed on its true

and false sides.

- Some Branches are covered multiple times

- All process blocks need to be covered at least once

- If node has ‗n‘ entry points then, same node should be covered n times

because each entry point may have different impact on subsequent code

blocks.

- If there are concatenated decision points, there could be duplicate paths. (eg.

nodes 7 & 8 considered 4 times – last 4 paths). Last 2 paths could be ignored

- Single entry single exit paths should be considered only once

- Similarly combination of two paths also should not be considered

268

Number of independent paths in the program is known as Cyclomatic Complexity

CC (Independent Paths) = Number of links (Arrows) – Number of Nodes (Circles) + 2

= 14 – 12 + 2 = 4

Or CC = Number of regions = 4.

Cyclomatic complexity provides quantitative measure of logical complexity of the

program. It also tells number of independent paths in the basis set and hence

represents number of tests to be conducted to ensure coverage of all statements,

paths and conditions.

In summary, following steps to be followed

1) Draw Flow graph

2) Determine Cyclomatic complexity.

3) Determine a basis set of linearly independent paths.

4) Prepare test cases (Choose the data of the variables used) that will force

execution of each independent path.

Condition Testing

In this case the focus is given to ensure that the condition used in the program is

correct. A condition will be incorrect if any one portion of the condition is incorrect –

expression, Boolean or Logical operator, Parenthesis error.

Data Flow Testing (TutorialsPoint, ProfessionalQ A.com)

Dataflow Testing focuses on the points at which variables receive values and the

points at which these values are used.

So, the data flow testing method [fra93] selects test paths of the program according

to locations of definitions and uses of the variables in the program.

It aims to find out

- A variable that is declared but never used within the program.

- A variable that is used but never declared.

- A variable that is defined multiple times before it is used.

- A variable is de-allocated before it is used.

269

Loop Testing

Many algorithms use loops and hence it is important to give focus to validate them.

Let us understand approach to be used for various types of loops.

Simple Loops: If there are maximum n allowable passes through the loop then

following tests should be considered for testing

1. Skip loop entirely

2. Only one pass through loop

3. Two passes through loop

4. m passes through loop where m < n

5. n-1 passes through the loop

6. n passes through the loop

7. n+1 passes through the loop

Nested Loop

Nested loops can result into impractical number of tests if the nesting increases. So,

need to apply the approach suggested by Beizer [Bei90].

 Start at the inner loop and set all the other loops to minimum values.

 Conduct tests suggested above for simple loop while holding the outer loop at

their minimum loop counter. Add other tests for out-of-range or excluded

values

 Work outwards, conducting tests for next loop but keeping all other outer

loops at minimum values and other nested loops to typical values

 Continue until all loops have been tested.

Concatenated loops

Consider each loop as simple loop if they are independent. If they are not

independent (when counter of loop 1 is used for loop 2) then apply guidelines of

Nested loop.

270

Unstructured Loops

It is suggested to redesign such loops

Considering the approach, white box test design techniques and testing is best

suited for unit testing and done by developers as it requires knowledge of

programming and internal structure of the program.

Check your Progress 2

1) As part of white-box test design techniques, one should ensure that all the

statements are executed at least once during testing. True / False?

2) Briefly explain how redundancy can be eliminated / reduced due to Flow

Graph?

3) The node should be covered times if there are three entry points to the

node.

4) There are independent paths if there are 10 links and 6 nodes in the

graph?

5) Briefly explain how nested loop should be tested.

3.4 BLACK BOX TEST DESIGN TECHNIQUES

Black box testing is a method in which testing is done without considering internal

structure or design of the system but is based on functional requirement of the

program or a system. It is done from the user‘s perspective

Black box test design technique is a procedure to derive and/or select test cases

based on an analysis of the specification of a component or system without

reference to its internal structure.

The attention is on information domain rather than internal control structures.

It is complementary to white box testing and likely to uncover different class of errors

such as

- Inaccurate processing due to invalid inputs

- Incorrect or missing functions

271

- Interface errors

- Errors in data structures or external database access

- Behaviour or performance errors

- Initialization and termination errors

Following 5 techniques are important and popular to test business function and

processes at all testing levels

1. Equivalence Partition

2. Boundary Value Analysis

3. Decision Table / Cause-Effect

4. State Transition

5. Use case based Testing

We will understand each technic in little more detail.

3.4.1 EQUIVALENCE PARTITIONING (EP) & BOUNDARY VALUE

ANALYSIS (BVA)

Equivalence Partitioning

Most developers / testers use this approach informally without realizing that it is a

useful technique and hence it is also known as common sense approach.

This technique is primarily used for input validation of a field in which the possible

input data is divided into valid and invalid partitions (also known as classes or sets).

All the data within a specific class are considered to be equivalent as system is

expected to produce equivalent output for all the data in the partition. It is hence

recommended to test for at least one data from each partition rather than testing

multiple data from some partitions and skipping some partitions fully.

For example, the requirement says that number of passengers within single ticket

can be between 1 and 6. There are going to be three equivalent classes

Valid class V1 : {1,2,3,4,5,6}

Invalid class I1 :{…..-2,-1,0} and I2 : {7,8,9……}

272

The systems behaviour for any value entered from class V1 will be same (allow to

book) so any one value from the class V1 can be used to test the application

Similarly any values entered from class I1 , the system should display message

―Minimum number of passenger should be 1‖. So, testing can be done using any one

value from class I1 . Similarly system to be tested for any one value from class I2 .

As you can notice, we require only three test cases as we are restricting our test

cases to optimum required.

Typically an input condition is expecting a specific numeric value, a range of values,

a set of related values or a Boolean condition expecting only True/False. The

classes derived will be as given below.

- For Range of values: one valid and two invalid classes (as discussed in

example)

- For a set of values: one valid and one invalid class. 1) Valid values, 2) Invalid

values

- For Boolean, one valid and one invalid class. 1) {True, False}, 2) {abc, …}

- For every mandatory field, you will have two classes, 1) Null value 2) Some

value

- For Length checking you will have Three classes, 1) All values whose length

is less than the Minimum length allowed 2) All values whose length is

between minimum and maximum length allowed and 3) All values whose

length is more than the maximum length allowed.

- For every Type checking, you will have two classes, 1) All values with valid

type, 2) All values with invalid type.

Note that deriving correct partitions is very important for any requirement. However if

it is not very clear,

o It is better to try several values in a partition. If this results in different

behaviour where you expected it to be the same, then there may be two (or

more) partitions where you initially thought there was only one

o It may be a good idea to verify the partitions with the customers

273

1

Boundary Value Analysis (BVA)

For continuous range of values, upper and lower limits are checked in program with

the help of relational operators such as ‗>‘ or ‗>=‘ on the lower limit and ‗<‘ or ‗<=‘ for

the upper limit. So chances of error are not in the middle but at the boundaries.

Boundary Value Analysis complements / expands EP and suggests that we should

not just take any value from the class for testing but take values on both the

boundaries and improve chances of finding errors. If we take any value from the

class, we may miss to find error.

Boundary value is an input value or output value which is on the edge of an

equivalence partition or at the smallest incremental distance on either side of an

edge.

So for testing number of passengers field where valid class is {1….6}, we should test

the program by trying with 0, 1, 2, 5, 6 and 7 (with an understanding that the edge is

on 1 and other edge is on 6).

….-2 –1 0 1 2 3 4 5 6 7 8 ….

Since in this case only integer numbers are considered, we can assume that the

edge is not exactly on 1 and 6 but it is between 0 and 1 and between 6 and 7. In this

case we can take two-value approach and test the program with values 0,1,6,7.

Test cases using EP and BVA

EP and BVA techniques are generally used for Unit testing. However they can also

be used for integration testing where system receive data from other sources (other

system/modules) via some interface as value received may also fall into Valid and

Invalid equivalence partitions.

274

Example of test cases based on EP and BVA.

Field Requirement Input Expected

Result

OK?

Passenger

Name

Mandatory Blank/Null Display

Error

 Between 1 to 40 Name with 0 Display

 characters characters error

 With 1 character Allow

 30 Characters Allow

 40 Characters Allow

 41 characters Display

 Error

 Only Character Type Enter

numeric

few Display

Error

 characters

Number

passengers

of Should be between 1

to 6

0 Display

Error

1 Allow

6 Allow

7 Display

Error

.......

Note that for Name field validation; first two test cases are same. Mandatory means

0 character length not allowed. So one of them can be removed

EP and BVA techniques are primarily used to validate whether application is really

accepting only valid values and is processing only for valid number of items and also

275

to ensure that it displays proper error messages for invalid inputs.

Many times, these techniques are also used to check if there are business rules

generating different output for different valid inputs. For example % of marks can be

between 1 and 100 but the grade to be assigned may vary based on % ranges.

Check your Progress 3

1) For a club membership there is rules that people of age between 18 and 30

are only allowed.

a) Provide equivalence partitions to validate the age field?

b) Which data you will use to test the requirement?

2) In a registration form, there is a rule that member name can have maximum

30 characters. What are the equivalence partitions?

3) Equivalence Partition is a better technique than Boundary Value Analysis.

True/False? Why?

4) Post office has decided their rates as given below. 25p up to l0g, 35p up to

50g plus an extra l0p for each additional 25g up to l00g.

Which test inputs (in grams) would be selected for testing using equivalence

partitioning?

a) 8, 42, 82, 102

b) 4, 15, 65, 92,159

c) 10, 50, 75, 100

d) 5, 20, 40, 60, 80

3.4.2 DECISION TABLE / CAUSE - EFFECT

When business decisions are taken based on input provided in more than one fields

then EP or BVA is not helpful.

For example, in airline reservation system, there is a discount policy to be

implemented as below

3.4.2.1 If the tickets are booked 20 days in advance, you get 5% discount

3.4.2.2 If more than 3 passengers are booked

in a single ticket/order, you get

additional 5% discount.

276

In this case, discount depends on two variables 1) Number of days in advance the

booking is being done and 2) number of passengers in a single ticket. EP / BVA can

be used for individual fields but not useful to check whether discount is properly

calculated or not. So, we need to prepare a table providing all the combinations of

two fields input and related discount decision. Such tables are known as Decision

Tables. The input variables are considered as causes and discount is considered as

effect, a Cause-Effect graph can also be prepared.

The technique suggests following process

1. Identify causes and Effect from the specification

2. Prepare Decision table

a) Write down the conditions (or causes) in the table

C1: Tickets booked 20 days in

advance

C2: Number of Passengers > 3

As you can see that there are two conditions. Each condition can have

two possible values ‗True‘ or ‗False‘ (we shortly consider ‗T‘ or ‗F‘ / ‗Y‘ or

‗N‘).

b) Identify all the combinations of true and false for these conditions and

write as rules

Rules:- 1 2 3 4

C1: Tickets booked 20 days in

advance
F F T T

C2: Number of Passengers > 3 F T F T

These combinations are also known as rules. Each combination / rule

may result in different effect.

277

Please note that the number of rules depends on number of conditions. If

there are 2 conditions, you have 2^2 = 2 x 2 = 4 combinations. If there are

3 conditions then you have 2^3 = 2 x 2 x 2 = 8 rules.

3. Identify the correct outcome for each combination (rule) and write

Rules:- 1 2 3 4

C1: Tickets booked 20 days in

advance

F

F

T

T

C2: Number of Passengers > 3 F T F T

E1: 5% Discount for booking in

advance of 20 days
N N Y Y

E2: 5% Discount for higher number

of tickets

N

Y

N

Y

Final Discount 0% 5% 5% 10%

You may write each effect separately based on specification and then write

the final outcome which may be combination of the all the above effects.

4. Combine the rules if the alternatives does not make any difference or remove

any rules which are not going to be possible.

5. Prepare Test Cases based on Decision table

As per the decision table prepared above there will be 4 test cases or different

combination as per 4 rules specified with expected result specified for each in Final

discount row.

278

Please refer to the following table indicating how the program needs to be tested for

4 times with different data values given in each case.

Test Condition

/ Scenario

Test Case

Input /Test

Data

Expected

Result

Pass/

Fail?

 Travel Date =

None of two

conditions

True

Ticket not booked in

advance of 20 days and

Passengers < 4

19 days after

Number of

Discount =

0

 passengers =3

One of two

Ticket booked more than

20 days in advance but

Passengers < 4

Travel Date =

20 days after

Number of

passengers = 3

Discount =

5%

conditions

True

Ticket booked less than

20 days in advance but

Passengers > 3

Travel Date =

19 days after

Number of

Discount =

5%

 passengers = 4

Both

conditions

True

Ticket booked more than

20 days in advance and

Passengers > 3

Travel Date =

20 days after

Number of

Discount =

10%

 passengers = 4

You can notice how this technique helps us to restrict to only 4 test cases, one for

each combination. If we don‘t use this technique we may randomly provide some

inputs and end up doing redundant testing or missing one of the rules.

Notes:

1) Rules in the entry section will be converted to test cases. So number of rules

will be same as number of test cases.

279

2) Decision tables in which all conditions are binary (takes only one of the two

values T or F) is called Limited entry decision Table.

For Limited entry decision tables if there are n conditions then there will be 2n

rules. So, if there are 3 conditions, there will 23 = 2* 2*2 = 8 rules.

3) Decision tables with conditions allowing more than two values are called

Extended Entry Decision Tables.

For Extended entry decision tables, number of rules will be multiplication of number

of values for each condition. So, if there are 3 conditions, 1st condition can take 2

values, 2nd condition can take 3 values and 3rd condition can take 3 values then total

number of rules will be 2*3*3 = 18.

Check your Progress 4

1) For examination result processing, there is a rule that if you have completed

at least 3 out of 5 assignments, you get 1 grace mark and if your attendance

is >= 80%, you get additional 2 grace marks.

Prepare decision table for this requirement.

2) A college Library has the following norms for yearly charge increase

 Fee increase will be 100 If female student and no defaults in last year

else 150

 Fee increase will be 200 For any age if number of defaults made is

between 1 to 3

 Send warning letter if one or more defaults made.

 Cancel the membership if 4 or more defaults made

How many rules will be there for this requirement?

3.4.3 USE CASE BASED TEST DESIGN

A use case is a description of a particular use of the system by an actor. The actor

may be something that the system interfaces to. Actors are generally users (people)

but they may also be communication links or sub-system or other systems. Each use

case provides sequence of steps that describes the interactions the actor has with

the system in order to achieve a specific task (or, at least, produce something of

280

value to the actor).

There could be many scenarios (alternate ways of operations) for each use cases

Categories of Scenarios

Scenarios can be divided into two categories – a) Primary and b) Alternate. And Test

cases should be prepared for all the scenarios under these categories.

1) Primary / Basic Scenario

It is the most common way for a use case to happen; as if everything goes as

per normal process.

It represents normal functionality described by the use case.

For example, online reservation by passenger with all valid details using

normal payment mode

2) Alternate Scenario

This is a scenario where the precondition steps, actions or sequence of

actions are different from the one described in the primary scenario. This

includes special cases or exceptional conditions or even error conditions.For

example, User enters all the details, but later on changes mind and modify

details before confirmation or User Cancel‘s in between or Flight gets full for a

given date / slot or Invalid credit card is used.

Components of Scenario: Each scenario has following three components

Pre-Conditions

Anything that must happen before the scenario can start

It describes the state in which the system must be, before the scenario start

Steps

All interactions between the system and actors which are necessary to complete

the scenario

Post-Conditions

Anything that must be true after the scenario is completed

281

It describes in what state the system acquires after the scenario has been

completed successfully

Example

Description: Verify that travel reservation is completed successfully by a

passenger

Pre-Condition:

1) Passenger has valid credit card for booking 2) Round Trip is available between

two cities – Ahmedabad and Mumbai. 3) A user is successfully logged in with

User ID: passenger1 and Password: passenger1 and Home page is displayed

which contains a button ‗Reserve Ticket‘.

Step

Steps and Test Data Output (Expected)

1 Enter Trip Type: Round

From Location: Ahmedabad

To Location: Mumbai

Travel Date: 15-Nov-2019

Return Date: 18-Nov-2019

Number of passengers: 2

Select Class: Economy

Press ‗Search‘ Button

System displays various flight

options with number of seats

available and price/cost

2 User Selects a specific flight

option by clicking ‗book‘ button

against that flight

System displays forms to input

passenger details

3 Enter Passenger details (Name,

Gender, Age) for both passengers

1 Manish Tripathi, M, 55

2 Mona Tripathi, F, 54

System verifies and accepts the

details and displays payment

form

282

Press ‗Submit‘ Button

4 Provide Credit card details

Credit card agency: ICICI

Credit Card number: xxxxxxxxx

Press ‗Submit‘ button

User confirms and Press Submit

button

Control goes to Accounting

system, credit card details are

verified and then confirmation

message is displayed.

Payment is transferred. Ticket is

generated and displayed

Post Condition: Verify that 1) Reservation is done, 2) Two seats are removed

from inventory, 3) Credit card transaction is posted, 4) Customer is still logged

into the system, 5) ‗Update‘ and ‗Cancel‘ buttons are enabled (so that user can

update or cancel the reservation if required).

Note:

1) You will notice that steps are at high level as compared to Unit testing

because it is assumed that unit testing was already done and individual field

level rules are assumed to be working fine.

2) If system is not in pre-condition state then we need to first take some steps to

bring it in pre-condition state. It is also assumed that those steps were already

tested earlier.

3) One need to identify inputs required for the pre-conditions and also for the

steps where exact data to be used.

4) Output described in each step and post-conditions are expected results and to

be verified. They are all to be considered as separate test cases and in some

cases may have to be documented separately.

5) Each variant in the pre-condition or steps becomes separate test scenario –

Eg user has valid debit card instead of credit card or does not confirm the

details after entering details and changes the data in between or enters age

such that passenger becomes a senior citizen.

283

Check your Progress 5

1) Give example of primary scenario and alternate scenario with reason.

2) Provide pre-condition, steps, and post condition details for a scenario where

user directly cancels a ticket.

3.4.4 STATE TRANSITION

Many times, application‘s appearance / output for the same input / state are different

depending on what has happened before. For example, a word processing

application has two states Open and Close. The ‗Close‘ button is available only if a

document is open. After you select 'Close' once, you cannot select it again for the

same document unless you open that document.

Similarly an online reservation system may provide different output for unregistered

users and registered users; it can provide different buttons if no tickets are booked

and different buttons if some tickets are booked (means current state of the user or

transactions of the user). So, ‗Update‘ and ‗Cancel‘ buttons should be disabled until

any ticket is booked and is active (travel not yet happened).

For Example, an online airline reservation system may have three states

 Unregistered User/Start State–You are accessing the application for the first

time and have not yet registered

 Registered User State – You have already registered to the application and

have successfully logged in

 Active customer State - You have done some travel booking and it is still

active – you have not yet travelled

In general, every system can be in different finite number of states. System may

transition from one state to other state if some action is taken. It is important to

ensure that system behaves as expected due to changes in the state (situation /

position / circumstances) of system / customer / any other entity such as account.

284

A state transition model has following components

1) Application can occupy various states – Identify unique state the

application can be in.

For reservation application: 1. Unregistered user or 2. Registered user or 3.

Active Customer

2) Application can move to only specific state from the current state

Application can move from State 1 to state 2 but cannot move from state 1

directly to state 3.

Application moves from state 2 to state 3 when the booking is done and again

moves back to state 2 when travel takes place or the booking is cancelled (so

that no ticket remains active).

3) Only specific transaction or events are allowed in the particular state

Unregistered User/ Start State – System should display options only for

viewing various flight schedules but should not display any options to book

any tickets. The application should also display option to register

Registered User State – In addition to displaying option for viewing various

flight details, the application should also display options and buttons to be

able to book the ticket

Active Customer State - Once a ticket is booked and active, the user

becomes active customer. Under this state, application should display

additional option for updating or cancelling the ticket. So corresponding

buttons to Update or Cancel should now be enabled.

4) Only specific events results into a transition to other state

As an unregistered user, if you just view flights, the state does not change but

if you register, you can move to state 2. Similarly you can move from state 2

to state 3 only if you book ticket

The input or condition or event that takes the application from one state to

other could be a key press, a menu selection, an input, or a telephone ring or

any other such process. State cannot be exited without any reason / event.

So, until some event takes place, application should remain in the same state.

285

5) The actions or effect that result from a transition (an error message, or

success)

Once you move from state 2 to state 3, the buttons ‗Update‘ and ‗Cancel‘

should be enabled. In general, this includes a menu or buttons being

displayed or hidden, a flag being set, calculation being performed or any other

such thing happening due to transition.

Let us take other example

Example : Login to banking application for cash withdrawal

This being critical application impacting financial aspects, the application may have

provision to lock the account if wrong user ID & Password given for four times. In this

case Login screen is same, the inputs required are same but action required after 4th

trial is different. After 4th trial the application has to move to locked state and should

not allow user to access the application unless he/she gets it unlocked. Please also

note that since application has to internally maintain count of the trial at each trial,

each trial is treated as a separate state. Sometimes transition diagram looks better to

easily understand relationship between each state and transition from one state to

other state.

The test cases can be written in table format also.

286

States

New state if you

Enter Correct

Password

New state if you

Enter Incorrect

Password

S1 Start S6 S2

S2 1st Try S6 S3

S3 2nd Try S6 S4

S4 3rd Try S6 S5

S5 4th Try S6 S7

S6 Access

S7
Lock and Close

Application
- -

As part of the testing, one may have to try correct password and incorrect password

at all trials but entering correct password at all trials may not be required.

Check your Progress 6

1) It is possible to move from any state of the application to any other state.

True/False?

2) What the key components are of State Transition Technique, based on which

the test cases are prepared?

3) Give example of state transition from any system

3.5 LET US SUM UP

We saw an example where number of permutations and combinations become very

high and practically impossible to test for testing 6 digit character code or a code with

two nested loops and four if-then-else conditions. So, on one side it is critical to test

application thoroughly so that defects do not remain in the system, on the other side

exhaustive testing is not practically possible. Which means we need to find out some

ways by which we select few test cases which a) has high potential to find error, b) is

not redundant and c) has highest likelihood of uncovering whole class of errors.

Test Design techniques help meeting this objective.

287

White-boxtest design techniques helpsin deriving test cases based on internal

structure of the program by focusing on testing independent paths, logical decisions,

loops, and internal data structures.

Control flow graphs depicted with the help of nodes (for process blocks and decision)

and links indicating direction of flow helps us to easily find out various paths to be

considered for testing. Covering all paths in our testing ensures that every statement

in the program will be executed during testing on both true and false side of the

conditions. Control graph also helps in deriving Cyclomatic complexity which

indicates number of independent paths and taking decision accordingly. So, instead

of doing testing randomly, or testing same path multiple times and missing some

path, we can do testing of each independent path once.

We also do condition testing to ensure that all the portions of condition (expression,

operator, parentheses) are correctly used.

As part of white box testing, we also do Data Flow testing in which we select the

paths of the program according to locations of definitions and usage of the variable

in the program and try to find out if there are any issues such as variable is declared

but not used, used but not declared, defined multiple time or de-allocated before use.

As part of loop testing we consider 7 different test cases for each simple loop which

covers -zero, one, two, m, n-1, n and n+1 passes where n is total number of

allowable passes and m is any number between 1 and n. For nested loops we

should treat each loop as simple loop and start from inner most loop keeping all

other loops to minimum values and then work outwards conducting test for next

upper level loop keeping all other outer loops at minimum values and other nested

loops to typical values.

Black-box test design techniques help in deriving optimum test cases from

external / business view perspective at each level.

Using Equivalence Partitioning technique, we divide possible values of input

domain or output domain in to different valid and invalid classes with an assumption

that system behaves equivalently for all values within the class and test the program

with only one value from each class but cover all the classes at least once.

For continuous range of values, the chances of error comes towards the edges of

the classes and hence we apply Boundary Value Analysis where we take values at

288

the boundaries on both the sides for testing rather than taking any intermediate value

of the class.

For testing any business rule based on two or more than two variables, we prepare

Decision Tables where all combinations of answers to the conditions are written

with corresponding expected result. Each combination / rule becomes test case.

Total number of combinations will be multiplication of number of values for each

condition.

Use cases are used to develop various business Scenarios for each transaction

and we do testing based on those scenarios to ensure that specific task the

customer is trying to achieve is properly achieved. We generally have primary/basic

scenario representing most common way for a use case to happen and alternate

scenarios providing variation in pre-condition or sequence of steps or input data or

other exceptional situation happening. Pre-condition for the scenario helps us to

know the state in which the application should be before we start following various

steps. Expected response from the system at the end of each step and post

condition (state in which the application should be after all the steps are completed)

becomes expected results.

State Transition Test design techniqueguides us to ensure that for a specific

requirement 1) Application could be in various possible states, 2) application can

move to only specific state from current state, 3) only specific transactions or events

are allowed for under state, 4) Only specific events result into transitions and 5)

various actions or effects are happening due to transition. State transition table can

be prepared or diagram can be prepared depicting above rules and test cases are

prepared based on the table / graph.

3.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Check your Progress 1

1) True because considering all combinations for a given requirement may result

in very large number requiring may be thousands of years and hence not

practically feasible.

2) Greatest,realistic

3) characteristics of good test case:

289

a. High probability to find errors

b. not redundant (there should not be other test case for finding same error)

4) Black Box

Check your Progress 2

1) True

2) Redundancy can be eliminated / reduced by Flow Graph becauseFlow graphs

allow us to find out total number of basis paths and also with the help of

cyclomatic complexity formula we can identify number of independent paths.

This allows us to provide data inputs such that all the independent paths are

executed once and hence it ensures that all the statements are covered at

least once in testing. Without this we may either test specific blocks of

statements multiple times or skip some blocks.

3) 3

4) 4

5) For nested loops we should treat each loop as simple loop and start from

inner most loop keeping all other loops to minimum values and then work

outwards conducting test for next upper level loop keeping all other outer

loops at minimum values and other nested loops to typical values.

Check your Progress 3

1) For a club membership there is rules that people of age between 18 and 30

are only allowed.

a) Provide equivalence partitions to validate the age field?

Ans: Valid Partition V1: {18,19,….29,30}, Invalid partition I1:

{0,1,2,…16,17}, Invalid Partition V2: {31,32, }

b) Which data you will use to test the requirement?

Ans: We will use data 17,18,30 and 31 years of age because it will

check boundaries and at least one value from each partition is

considered for testing

290

2) In a registration form, there is a rule that member name can have maximum

30 characters. What are the equivalence partitions?

Ans: Here the length (number of characters) of the name to be checked.

Valid partition V1 {1, 2, …, 29, 30}, Invalid partitions I1: {0} and I2: {31, 32,

………}

3) False because errors are more likely on the boundary of the partition. So,

instead of taking any value of the partition for testing, it is better to take value

on the edge of the partition.

4) Post office has decided their rates as given below. 25p up to l0g, 35p up to

50g plus an extra l0p for each additional 25g up to l00g.

Ans: Option b) because there are going to be 5 equivalence partitions

{1…10}, {11…50}, {51…75}, {76…100}, {101…….}

Note that the requirement says that extra 10p for each additional 25g up to

l00g. So partition of 51 to 75g and 76 to 100 gm should be considered

separately. We should also consider partition of values greater than 100 g

Check your Progress 4

1) Decision table :

Rules:- 1 2 3 4

C1: # of assignments completed

>=3

F

F

T

T

C2: Attendance >= 80% F T F T

E1: 1 Grace mark due to

assignments

N

N

Y

Y

E2 2 Grace marks due to

attendance

N

Y

N

Y

291

Final Discount 0 2 1 3

2) ARules for library requirement:

There will be 6 rules because, considering the Effects based on the inputs,

there are two variables –

1. Gender of the student – will have two possible values – Male, Female

and

2. Number of defaults in previous year – and can occupy three possible

values 0, 1-3, >= 4

So total number of combinations will be 2 x 3 = 6. (As this is an extended

entry decision table)

Check your Progress 5

1) An example of primary scenario and alternate scenario:

A most common way for booking a return journey ticket online where the

payment is made through valid credit card can be considered as a primary

scenario. Online booking by a staff member for return journey can be

considered as alternate scenario as some discount and seat preference

may be given to staff (so the system behaves slightly differently for a staff

member)

2) Pre-condition, steps, and post condition details for a scenario where user

directly cancels a ticket.:

Precondition:

a) Valid reservation exists, Cancelation was not done earlier

b) Credit card still valid

c) Flight time is at least 24 hours later than current cancellation time.

d) Boarding pass has not yet been issued

Steps

292

Step

Steps and Test Data Expected Result

1 Enter / Select Reservation number Reservation details are displayed

2 Click ‗Cancel‘ button System asks for confirmation

3 User provides confirmation System sends credit transactions

to accounting system and

cancel‘s reservation

Post condition:

a) Seats have been released for fresh reservation

b) Credit transaction is generated and confirmation is displayed.

c) Reservation has been marked as cancel.

Check your Progress 6

1) False, Application can move to only specific states from current state.

2) Key components of State Transition Technique:

a) Application can occupy various states

b) Application can move to only specific state from the current state

c) Only specific transaction or events are allowed in the particular state

d) Only specific events results into a transition to other state

e) The actions or effect that result from a transition (an error message, or

success)

3) Example of state transition :

A word processing application has two states Open and Close. The ‗Close‘

button is available only if a document is open. After you select 'Close' once,

you cannot select it again for the same document unless you open that

document.

293

4.7REFERENCES / FURTHER READINGS

(1) Software Quality Assurance and Testing for beginners by Nitin
Shah.

(2) FOUNDATIONS OF SOFTWARE TESTING- ISTQB
CERTIFICATION.

By Dorothy Graham, Erik van Veenendaal, Isabel Evans, Rex Black.

(3) Standard glossary of terms used in Software Testing - ISTQB
version 2.1.

294

 Unit 4: Software Project
Management

 Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 Reason for System Failure

4.4 Project Management

4.5 Project planning tools

4.6 Let Us Sum UP

4.7 Further Readings

4.8 Answer to Check Your Progress

4.9 Model Questions

4

295

4.1 LEARNING OBJECTIVES

After going through this unit, you will be able to –

 understand Project scheduling

 learn about system failure

 explain Project management chart

 develop Project management software

 4.2 INTRODUCTION

In the previous unit, we discussed various implementation issues of a system.

In this unit, we will discuss about project scheduling.

Project-task scheduling is a noteworthy project planning action. It comprises

deciding which activity would be taken up when. A software project manager

does the following to schedule a project. It is to identify all the functions required

to complete a project. In the beginning, a project manager always defines the

project-related activities. Let‘s say, if you are acting as a project manager for a

software development project at KKHSOU, then you should define the project-

related activities as follows:

i) Plan schedule management

ii) Defining the workflow diagram, activities, and sequence of activities

iii) Collect and estimate the activity resources

iv) Define the activity duration

v) Develop schedule

The activities of a software related project include the following:

i) Initial survey and data collection

ii) Analysis of the collected data

iii) Develop the initial requirement

iv) Develop software upgrading options

v) Create cost estimates

vi) Write report

vii) Professional review and revision

To schedule the project, a software project manager always does the

following:

1. Identifying the functional requirement of the project.

2. Dividing the large modules into smaller ones or activities.

3. Defining the dependency among various activities.

4. Defining the time duration required to complete the activities.

5. Allocating resources to activities.

6. Initiating the Plan for beginning and ending dates for the activities.

296

 4.3 REASON FOR SYSTEM FAILURE

A system failure can occur due to the hardware or software failure of the

system. The reasons for the system failure are presented below.

1. Voltage spike or hike: The voltage spike is

a transitory change in the electric power

supply. A small power malfunction can

smash up a computer and damage

computer data. For example: If the computer

screen goes blank during a thunderstorm, it

may be due to the reason of voltage spike.

2. Circuit board fails: A defective circuit board

is sometimes supposed to be the reason of

circuit board fails. In this case, the board is

reinstalled and the operation will resume.

3. Failure to load software upgrades: Due to

the failure to upgrade the various bugs or

vulnerabilities of a computer system, running

the patch can software lead to corruption of

data.

4. Failure to keep virus protection up to date:

The malware protection packages available

in the computer system must be maintained

and updated because a malware-infected

computer is slow in the data processing.

5. Inadequate cooling: Computers produce

more heat, during more data processing. So

adequate cooling is essential for reducing

the heating.

6. Loss of PDU fails: Due to the Power

Distribution Units (PDU‘s) failure, or power

loss, sometimes the system may fail.

7. UPS failure: Uninterruptible Power Supply

(UPS) batteries are used in the computer

system for continuous power for a limited

time. Depending on the design of the

battery, the life span of a battery may vary.

High room temperatures will curtail the life of

any battery.

8. Storage defective: Data is stored on

magnetic disks or tape. Both can be

damaged during normal operation, so it‘s a

297

good practice to back up stored data

regularly. Failure of a tape or disk drive is

often, but not always, proceeded by noise.

CHECK YOUR PROGRESS

Q1: What do you mean by project scheduling tasks?

Q2: What do you mean by project management?

Q3: What are the functionalities of a project manager to schedule a project?

Q4: What are the reasons for system failure?

Q5: What do you mean by storage defective?

 4.4 PROJECT MANAGEMENT

Project Management is the process of assisting the project managers in

achieving the definite project goals by keeping in mind the project scope, time,

quality, and cost. It is done by carefully organizing, scheming, and executing the

project. Managing a project is not an easy task, no matter what the level and

range are. From planning to deliver the product to the client, there is a lot that

can go wrong. To overcome this issue, the project management processes are

divided into manageable stages with their own goals and deliverables. These

stages will help to control the project and the quality of the output. The 5 basic

phases in the project management process are discussed in the following:

i) Initiation: The project initiation is the first

phase of project management. Here, the

project goal is defined. The Business cases

are defined with the help of the project

charter. It is an important document

consisting of project constraints, goals,

appointment of the project manager, budget,

expected timeline, etc. Once you have the

project goals and project scope, list down

the project stakeholders along with their

designation and requirement.

ii) Planning: After defining the scope of the

project, the project is planned along with the

budget baseline. The primary tasks are

defined to identify the technical requirement

of the project with a detailed schedule. The

proper goal and objectives, the

communication plan, and the role and

responsibilities of the stakeholders are

defined in this stage.

298

iii) Execution: Here the project resources are

allocated to execute the project. The

resources are well maintained to execute

the project. Here, the project development

team will do the actual work by maintaining

collaboration between the stakeholders.

Sometimes, the project manager takes the

help of project collaboration and

management tools to execute the project

efficiently.

iv) Monitoring and Controlling: The project

monitoring and controlling run

simultaneously. The following steps are

carried in this stage of project management.

i) Track the effort and cost of the

projects.

ii) Monitor the project progress.

iii) Prevent any chance of disruptions.

v) Closing: This is the final phase of the

project management process. It indicates

the end of the project after the final delivery.

The external resources or talents which are

hired for the project are terminated.

Sometimes, the project manager organizes

the reflection meeting after the completion of

the project to contemplate their successes

and failures during the project. A detailed

report which covers every aspect of the

project will be prepared and delivered.

 4.5 PROJECT PLANNING TOOLS

The project management tool is very much important to execute a project

successfully. To execute a project, few tools are specially designed for project

management work. These tools help the project manager to work in a

standardized manner. Few tools are demonstrated here only.

i) Milestone checklist: This tool is used by the project manager to

check the project progress in terms of its correctness. A project

manager can create a milestone checklist with the help of a simple

excel sheet without having any expensive software.

ii) Gantt chart: It is a chart used by the project manager to describe the

interrelation between the activity of the project. It is the tool used by

299

the project manager for any project development. It is more complex if

the project has more activities. A project Gantt chart may be created

in an excel sheet also. Nowadays many online Gantt chart editors are

there to create a Gantt chart. Let‘s take an example with the following

tasks for a project and the Gantt chart of the project is defined as

follows.

Sl. No.

Work Plan

Staring

Month

Ending

Month

Estimated

months for

each Task

Task 1
Detailed background study along

with field study
0 9 9

Task 2

Purchase of required equipment

and setting up the recording

requirement

2 4 2

Task 3
Data Collection and building of

corpora
1 12 11

Task 4 Feature extraction process for ML 8 12 4

Task 5 Training and testing phase for ML 13 15 2

Task 6 Implementation DL Model 13 20 7

Task 7

Development of software Tool and

digital preservation of traditional

method

12 26 14

Task 8
Loading and testing of ML and DL

Model into the developed system
23 29 6

Task 9
Implementation and Further

improvement
28 33 5

Task 10
Preparation of the report and Plan

for Post Project Activities
34 36 2

300

iii) Pert Chart: The pert chart means Program evaluation and review

technique. It was developed in 1950 by U.S. Navy. It is presented as a

network diagram where the nodes represent the events. The direction

of the lines indicates the sequence of the task. In the example as

shown in figure 15.1 given below, tasks between ―Task 1 to Task 9‖

must complete, and these are known as dependent or serial tasks.

Between Task 4 and 5, and Task 4 and 6, nodes are not dependent

and can undertake simultaneously. These are known as Parallel or

concurrent tasks. Without resource or completion time, the task must

complete in the sequence which is considered as event dependency,

and these are known as Dummy activity and represented by dotted

lines.

 Figure 15.1: Network diagram for 10 tasks

301

CHECK YOUR PROGRESS

Q6: What are the phases of project execution?

Q7: What is a Gantt chart?

Q8: What do you mean by pert chart?

Q9: What does the direction of a line indicate in the pert chart?

4.6 LET US SUM UP

 Project-task scheduling is a noteworthy

project planning action. It comprises

deciding which activity would be taken up

when.

 The project-related activities are as follows.

o Plan schedule management

o Defining the workflow diagram,

activities, and sequence of activities

o Collect and estimate the activity

resources

o Define the activity duration

o Develop schedule

 To schedule the project, a software project

manager always does the following:

o Identifying the functional requirement of

the project.

o Dividing the large modules into smaller

ones or activities.

o Defining the dependency among various

activities.

o Defining the time duration required to

complete the activities.

o Allocating resources to activities.

o Initiating the Plan for beginning and

ending dates for the activities.

 System failure can occur due to the

hardware or software failure of the system.

The reasons for the system failure are

presented below.

o Voltage spike or hike

o Circuit board fails

o Failure to load software upgrades

302

o Failure to keep virus protection up to

date

o Inadequate cooling

o Loss of PDU fails

o UPS

o Storage defective

 The 5 basic phases in the project

management process are

o Initiation

o Planning

o Execution

o Monitoring and Controlling

o Closing

 Gantt chart is used by the project manager to describe the

interrelation between the activity of the project. It is the tool used by

the project manager for any project development. It is more complex if

the project has more activities.

 Pert Chart means program evaluation and review technique. It was

developed in 1950 by U.S. Navy. It is presented as a network diagram

where the nodes represent the events. The direction of the lines indicates the

sequence of the task.

5.7 4.7 FURTHER READINGS

1. Wixom, B. H., Roth, R. M., (2008), Systems Analysis and Design, Wiley

Publishing

2. Kendall, K. E., Kendall J. E., (2019), Systems Analysis and Design,

Pearson

 4.8 ANSWER TO CHECK YOUR PROGRESS

Ans. Q No 1: Project-task scheduling is a noteworthy project planning action.

It comprises deciding which activity would be taken up when.

Ans. Q No 2: Project management is the application of processes, methods,

skills, knowledge, and experience to achieve specific project objectives

according to the project acceptance criteria within agreed parameters.

Ans. Q No 3: To schedule the project, a software project manager always does

the following:

a. Identifying the functional requirement of the project.

303

b. Dividing the large modules into smaller ones or activities.

c. Defining the dependency among various activities.

d. Define the time duration required to complete the activities.

e. Allocate resources to activities.

f. Initiate the Plan for beginning and ending dates for the activities.

Ans. Q No 4: A system failure can occur due to the hardware or software

failure of the system. The reasons for the system failure are presented

below.

g. Voltage spike or hike

h. Circuit board fails

i. Failure to load software upgrades

j. Failure to keep virus protection up to date

k. Inadequate cooling

l. Loss of PDU fails

m. PS

n. Storage defective

Ans. Q No 5: Data is stored on magnetic disks or tape. Both can be damaged

during normal operation, so it‘s a good practice to back up stored data regularly.

Failure of a tape or disk drive is often, but not always, proceeded by noise.

Ans. Q No 6: The 5 basic phases in the project management process are.

 Initiation:

 Planning

 Execution

 Monitoring and Controlling

 Closing

Ans. Q No 7: Gantt chart is a chart used by the project manager to describe the

interrelation between the activities of the project. It is the tool used by the

project manager for any project development. It is more complex if the project

has more activities. A project Gantt chart may be created in an excel sheet also.

Nowadays many online Gantt chart editors are there to create a Gantt chart.

Ans. Q No 8: The pert chart means the program evaluation review technique. It

was developed in 1950 by U.S. Navy. It is presented as a network diagram

where the nodes represent the events. The direction of the lines indicates the

sequence of the task.

Ans. Q No 9: The direction of the lines indicates the sequence of the task.

304

4.9 MODEL QUESTIONS

Q1: What is the role of the project manager and management in project

development?

Q2: Does the project schedule identify all pre-construction activities and

allocate adequate time for each?

Q3: Are all scheduled tasks of a PERT chart linked by predecessor and

successor?

Q4: Is the amount of time allocated for each task in line with historic

experience?

Q5: Represent a Gantt chart for software development of the KKHSOU

website.

Q6: What is the difference between Gantt and Pert charts?

Q7: Can I modify my schedule in the Gantt chart?

Q8: How do you go about planning a schedule for a project?

Q9: What are the ways a project time schedule can be compressed?

*** ***** ***

About University:
Dr. Babasaheb Ambedkar Open University (BAOU) was established by the Act of the Legisla�ve
Assembly by the Government of Gujarat. University offers 80+ programmes through 07 regional centres
and 285+ learner support centres. University, is accredited with A++ Grade (with 3.55 CGPA on 4 Point
Scale) by Na�onal Assessment Accredita�on Council (NAAC) in July 2022. University has been en�tled
to offer programmes under Online Mode by UGC DEB. University has been granted Category – I Graded
Autonomy Status by University Grants Commission (UGC).

The Master of Computer Applica�on (MCA) programme has been approved by All India Council for
Technical Educa�on (AICTE) and recognized by University Grants Commission (UGC) Distance Educa�on
Bureau (DEB). The programme is designed keeping in mind the needs of Informa�on Technology
Industry. The curriculum and self-learning material have been designed with the help of senior
academicians and industry experts incorpora�ng both theory and prac�cal components. The MCA
Program is designed to equip post graduate learners with an integrated set of skills that will allow them
to develop their professional careers in this area of Computer Science and Applica�on. It is further
focused to equip learners with the theore�cal and prac�cal that is necessary to enable them to prac�cal
knowledge in the design of complex solu�ons related to Computer Science and Applica�ons.

School of Computer Science:
The School of computer science offers a wide range of programmes in Computer Science and
Applica�ons for the benefit of one and all. The main focus of the school is to expose the students with
the latest technologies in the field of Computer Science and Applica�ons so that the student is able to fill
the gap that exists between the supply and the demand of the technically trained manpower in the said
domain. The courses offered by the school ranges from Cer�ficate, Diploma, Undergraduate, Post
Graduate Degree programmes and Research programme Ph.D.

Master of Computer Applica�on (MCA):

(Established by Government of Gujarat)

Dr. Babasaheb Ambedkar
Open University

BAOU
Educa�on
for All

Recognised by

UGC-DEB
Open and Distance

Learning (ODL)
 Programmes

Entitled by
UGC-DEB

Online (OL)
Programmes

All India Council for
 Technical Education

(AICTE)

Approved by

Dr. Babasaheb Ambedkar Open University
'Jyo�rmay' Parisar, S G Highway,
Chharodi, Ahmedabad - 382 481, Gujarat, Bharat
Web: www.baou.edu.in | Email: info@baou.edu.in
Contact: +917929796223,24,25 Tollfree: 1800 233 1020 978- 81- 965351- 4- 8

	MCA -105 Back Page.pdf
	Page 2

